
Package: metaforest (via r-universe)
November 4, 2024

Type Package

Title Exploring Heterogeneity in Meta-Analysis using Random Forests

Version 0.1.5

Author Caspar J. van Lissa

Maintainer Caspar J. van Lissa <c.j.vanlissa@gmail.com>

Description Conduct random forests-based meta-analysis, obtain partial
dependence plots for metaforest and classic meta-analyses, and
cross-validate and tune metaforest- and classic meta-analyses
in conjunction with the caret package. A requirement of classic
meta-analysis is that the studies being aggregated are
conceptually similar, and ideally, close replications. However,
in many fields, there is substantial heterogeneity between
studies on the same topic. Classic meta-analysis lacks the
power to assess more than a handful of univariate moderators.
MetaForest, by contrast, has substantial power to explore
heterogeneity in meta-analysis. It can identify important
moderators from a larger set of potential candidates (Van
Lissa, 2020). This is an appealing quality, because many
meta-analyses have small sample sizes. Moreover, MetaForest
yields a measure of variable importance which can be used to
identify important moderators, and offers partial prediction
plots to explore the shape of the marginal relationship between
moderators and effect size.

Depends R (>= 3.5.0), ggplot2, metafor, ranger, data.table, methods

Imports gtable, grid

Suggests testthat, caret, knitr, rmarkdown, covr

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

1

2 coef_test

URL https://cjvanlissa.github.io/metaforest/,

https://github.com/cjvanlissa/metaforest

BugReports https://github.com/cjvanlissa/metaforest/issues

Repository https://cjvanlissa.r-universe.dev

RemoteUrl https://github.com/cjvanlissa/metaforest

RemoteRef HEAD

RemoteSha 757ca35a6bbaf23049383084dcae3581a4261325

Contents

coef_test . 2
curry . 3
extract_proximity . 4
fukkink_lont . 5
MetaForest . 6
ModelInfo_mf . 8
ModelInfo_rma . 10
PartialDependence . 11
plot.MetaForest . 13
predict.MetaForest . 14
preselect . 15
preselect_vars . 16
print.summary.MetaForest . 17
SimulateSMD . 18
VarImpPlot . 19
WeightedScatter . 20

Index 22

coef_test Test coefficients of a model

Description

Conduct a t-test or z-test for coefficients of a model.

Usage

coef_test(x, par1, par2, distribution = "pt")

https://cjvanlissa.github.io/metaforest/
https://github.com/cjvanlissa/metaforest
https://github.com/cjvanlissa/metaforest/issues

curry 3

Arguments

x A model.

par1 Numeric or character. Name or position of the first parameter.

par2 Numeric or character. Name or position of the second parameter.

distribution Character. Which distribution to use. Currently, can be one of c("pt", "pnorm"),
for a t-test or z-test, respectively. Defaults to "pt".

Value

Named vector.

Examples

dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
res <- rma(yi, vi, mods = ~alloc-1, data=dat, method="REML")
coef_test(res, 1, 2)

curry Happy to Help?

Description

A systematic review and meta-analysis of the effects of performing acts of kindness on the well-
being of the actor.

Usage

data(curry)

Format

A data.frame with 56 rows and 18 columns.

Details

study_id factor Unique identifier of the study
effect_id integer Unique identifier of the effect size
d numeric Standardized mean difference between the control group and intervention group
vi numeric Variance of the effect size
n1i numeric Number of participants in the intervention group
n1c numeric Number of participants in the control group
sex numeric Percentage of male participants
age numeric Mean age of participants
location character Geographical location of the study
donor character From what population did the donors (helpers) originate?
donorcode factor From what population did the donors (helpers) originate? Dichotomized to Anxious or Typical

4 extract_proximity

interventioniv character Description of the intervention / independent variable
interventioncode factor Description of the intervention / independent variable, categorized to Acts of Kindness, Prosocial Spending, or Other
control character Description of the control condition
controlcode factor Description of the control condition, categorized to Neutral Activity, Nothing, or Self Help (performing a kind act for oneself)
recipients character Who were the recipients of the act of kindness?
outcomedv character What was the outcome, or dependent variable, of the study?
outcomecode factor What was the outcome, or dependent variable, of the study? Categorized into Happiness, Life Satisfaction, PN Affect (positive or negative), and Other

Source

doi:10.1016/j.jesp.2018.02.014

References

Curry, O. S., Rowland, L. A., Van Lissa, C. J., Zlotowitz, S., McAlaney, J., & Whitehouse, H.
(2018). Happy to help? A systematic review and meta-analysis of the effects of performing acts of
kindness on the well-being of the actor. Journal of Experimental Social Psychology, 76, 320-329.
doi:10.1016/j.jesp.2018.02.014

extract_proximity Extract proximity matrix for a MetaForest object.

Description

Extract proximity matrix for a MetaForest object.

Usage

extract_proximity(fit, newdata)

Arguments

fit object of class \’MetaForest\’.

newdata new data with the same columns as the data used for fit

Value

an n x n matrix where position i, j gives the proportion of times observation i and j are in the same
terminal node across all trees.

Examples

https://doi.org/10.1016/j.jesp.2018.02.014
https://doi.org/10.1016/j.jesp.2018.02.014

fukkink_lont 5

fukkink_lont Does training matter? A meta-analysis of caregiver training studies

Description

A review of 17 experimental studies published between 1980 and 2005 on the effect of specialized
training on the competency of caregivers in childcare.

Usage

data(fukkink_lont)

Format

A data.frame with 78 rows and 30 columns.

Details

id_exp integer Unique identifier of the study
yi numeric Standardized mean difference between the control group and
vi numeric Variance of the effect size
Journal factor Publication type (scientific journal or other publications)
Setting factor Setting (center-based care or family daycare)
Integrated factor Whether the training was integrated into childcare practice
Supervision factor Whether supervision was part of the training
Scope factor Scope of the training (narrow or broad)
Location factor Location of the training (one-site or multi-site)
Curriculum factor Fixed curriculum
Control factor Alternative treatment for control group
Assignment factor Random assignment or matching (at the level of the individual caregiver or childcare center)
Train_Knowledge factor Explicit focus on knowledge
Train_Skills factor Explicit focus on skills
Train_Attitude factor Explicit focus on attitude
Video factor Use of video feedback
Design factor Single group, or two-group experimental design
Pre_Post factor Pretest/posttest design (yes/no)
Blind factor Was a blinding procedure used?
Attrition numeric Attrition from the experimental condition (percentage)
Pretest_es numeric Pre-test effect size
Self_report factor Self-report measures of caregiver competencies versus ‘objective’ test or observation by independent observer
DV_Knowledge factor Test focused on knowledge
DV_Skills factor Test focused skills
DV_Attitude factor Test focused on attitudes
DV_Aligned factor Test aligned with the content of the training (yes/no)
Two_group_design factor Single group, or two-group experimental design
Trainee_Age numeric Trainees’ age

6 MetaForest

Trainee_Experience numeric Trainees’ working experience
n_total integer Total n at post-test

Source

doi:10.1016/j.ecresq.2007.04.005

References

Fukkink, R. G., & Lont, A. (2007). Does training matter? A meta-analysis and review of caregiver
training studies. Early childhood research quarterly, 22(3), 294-311. doi:10.1016/j.ecresq.2007.04.005

MetaForest Conduct a MetaForest analysis to explore heterogeneity in meta-
analytic data.

Description

MetaForest uses a weighted random forest to explore heterogeneity in meta-analytic data. MetaFor-
est is a wrapper for ranger (Wright & Ziegler, 2015). As input, MetaForest takes the study effect
sizes and their variances (these can be computed, for example, using the metafor package), as
well as the moderators that are to be included in the model. By default, MetaForest uses random-
effects weights, and estimates the between-studies variance using a restricted maximum-likelihood
estimator. However, it may be beneficial to first conduct an unweighted MetaForest, and then use
the estimated residual heterogeneity from this model as the estimate of tau2 for a random-effects
weighted MetaForest.

Usage

MetaForest(
formula,
data,
vi = "vi",
study = NULL,
whichweights = "random",
num.trees = 500,
mtry = NULL,
method = "REML",
tau2 = NULL,
...

)

https://doi.org/10.1016/j.ecresq.2007.04.005
https://doi.org/10.1016/j.ecresq.2007.04.005

MetaForest 7

Arguments

formula Formula. Specify a formula for the MetaForest model, for example, yi ~ . to
predict the outcome yi from all moderators in the data. Only additive formulas
are allowed (i.e., x1+x2+x3). Interaction terms and non-linear terms are not
required, as the random forests algorithm inherently captures these associations.

data A data.frame containing the effect size, moderators, and the variance of the ef-
fect size.

vi Character. Specify the name of the column in the data that contains the vari-
ances of the effect sizes. This column will be removed from the data prior to
analysis. Defaults to "vi".

study Character. Optionally, specify the name of the column in the data that contains
the study id. Use this when the data includes multiple effect sizes per study.
This column can be a vector of integers, or a factor. This column will be re-
moved from the data prior to analysis. See Details for more information about
analyzing dependent data.

whichweights Character. Indicate what time of weights are required. A random-effects MetaFor-
est is grown by specifying whichweights = "random". A fixed-effects MetaFor-
est is grown by specifying whichweights = "fixed". An unweighted MetaFor-
est is grown by specifying whichweights = "unif". Defaults to "random".

num.trees Atomic integer. Specify the number of trees in the forest. Defaults to 500.

mtry Atomic integer. Number of candidate moderators available for each split. De-
faults to the square root of the number moderators (rounded down).

method Character. Specify the method by which to estimate the residual variance. Can
be set to one of the following: "DL", "HE", "SJ", "ML", "REML", "EB", "HS",
or "GENQ". Default is "REML". See the metafor package for more informa-
tion about these estimators.

tau2 Numeric. Specify a predetermined value for the residual heterogeneity. Entering
a value here supersedes the estimated tau2 value. Defaults to NULL.

... Additional arguments are passed directly to ranger. It is recommended not to
use additional arguments.

Details

For dependent data, a clustered MetaForest analysis is more appropriate. This is because the predic-
tive performance of a MetaForest analysis is evaluated on out-of-bootstrap cases, and when cases
out of the bootstrap sample originate from the same study, the model will be overly confident in its
ability to predict their value. When the MetaForest is clustered by the study variable, the dataset
is first split into two cross-validation samples by study. All dependent effect sizes from each study
are thus included in the same cross-validation sample. Then, two random forests are grown on
these cross-validation samples, and for each random forest, the other sample is used to calculate
prediction error and variable importance, see doi:10.1007/s1163401602764.

Value

List of length 3. The "forest" element of this list is an object of class "ranger", containing the results
of the random forests analysis. The "rma_before" element is an object of class "rma.uni", containing

https://doi.org/10.1007/s11634-016-0276-4

8 ModelInfo_mf

the results of a random-effects meta-analysis on the raw data, without moderators. The "rma_after"
element is an object of class "rma.uni", containing the results of a random-effects meta-analysis on
the residual heterogeneity, or the difference between the effect sizes predicted by MetaForest and
the observed effect sizes.

Examples

#Example 1:
#Simulate data with a univariate linear model
set.seed(42)
data <- SimulateSMD()
#Conduct unweighted MetaForest analysis
mf.unif <- MetaForest(formula = yi ~ ., data = data$training,

whichweights = "unif", method = "DL")
#Print model
mf.unif
#Conduct random-effects weighted MetaForest analysis
mf.random <- MetaForest(formula = yi ~ ., data = data$training,

whichweights = "random", method = "DL",
tau2 = 0.0116)

#Print summary
summary(mf.random)

#Example 2: Real data from metafor
#Load and clean data
data <- dat.bangertdrowns2004
data[, c(4:12)] <- apply(data[, c(4:12)], 2, function(x){

x[is.na(x)] <- median(x, na.rm = TRUE)
x})

data$subject <- factor(data$subject)
data$yi <- as.numeric(data$yi)
#Conduct MetaForest analysis
mf.bd2004 <- MetaForest(formula = yi~ grade + length + minutes + wic+

meta, data, whichweights = "unif")
#Print MetaForest object
mf.bd2004
#Check convergence plot
plot(mf.bd2004)
#Check summary
summary(mf.bd2004, digits = 4)
#Examine variable importance plot
VarImpPlot(mf.bd2004)

ModelInfo_mf Returns a MetaForest ModelInfo list for use with caret

Description

This function allows users to rely on the powerful caret package for cross-validating and tuning
a MetaForest analysis. Methods for MetaForest are not included in the caret package, because the

ModelInfo_mf 9

interface of caret is not entirely compatible with MetaForest’s model call. Specifically, MetaForest
is not compatible with the train methods for classes ’formula’ or ’recipe’, because the variance of
the effect size must be a column of the training data x. The name of this column is specified using
the argument ’vi’.

Usage

ModelInfo_mf()

Details

To train a clustered MetaForest, for nested data structures, simply provide the optional argument
’study’ to the train function, to specify the study ID. This should again refer to a column of x.

When training a clustered MetaForest, make sure to use ’index = groupKFold(your_study_id_variable,
k = 10))’ in traincontrol, to sample by study ID when creating cross-validation partitions; otherwise
the testing error will be positively biased.

Value

ModelInfo list of length 17.

Examples

Not run:
Prepare data
data <- dat.bangertdrowns2004
data[, c(4:12)] <- apply(data[, c(4:12)], 2, function(x){

x[is.na(x)] <- median(x, na.rm = TRUE)
x})

data$subject <- factor(data$subject)
data$yi <- as.numeric(data$yi)
Load caret
library(caret)
set.seed(999)
Specify the resampling method as 10-fold CV
fit_control <- trainControl(method = "cv", number = 10)
cv_mf_fit <- train(y = data$yi, x = data[,c(3:13, 16)],

method = ModelInfo_mf(), trControl = fit_control)

Cross-validated clustered MetaForest
data <- get(data(dat.bourassa1996))
data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di= rh.re,

data = data, add = 1/2, to = "all")
data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE)
data[c(5:8)] <- lapply(data[c(5:8)], factor)
data$yi <- as.numeric(data$yi)
Set up 10-fold grouped CV
fit_control <- trainControl(method = "cv", index = groupKFold(data$sample,

k = 10))
Set up a custom tuning grid for the three tuning parameters of MetaForest

10 ModelInfo_rma

rf_grid <- expand.grid(whichweights = c("random", "fixed", "unif"),
mtry = c(2, 4, 6),
min.node.size = c(2, 4, 6))

Train the model
cv.mf.cluster <- train(y = data$yi, x = data[, c("selection", "investigator",

"hand_assess", "eye_assess",
"mage", "sex", "vi",
"sample")],

study = "sample", method = ModelInfo_mf(),
trControl = fit_control,
tuneGrid = rf_grid)

End(Not run)

ModelInfo_rma Returns an rma ModelInfo list for use with caret

Description

This function allows users to rely on the powerful caret package for cross-validating and tuning
a rma analysis. Methods for rma are not included in the caret package, because the interface of
caret is not entirely compatible with rma’s model call. Specifically, rma is not compatible with the
train methods for classes ’formula’ or ’recipe’. The variance of the effect sizes can be passed to
the ’weights’ parameter of train.

Usage

ModelInfo_rma()

Details

When using clustered data (effect sizes within studies), make sure to use ’index = groupKFold(your_study_id_variable,
k = 10))’ in traincontrol, to sample by study ID when creating cross-validation partitions; otherwise
the testing error will be positively biased.

Value

ModelInfo list of length 13.

Examples

Not run:
Prepare data
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
dat$yi <- as.numeric(dat$yi)
dat$alloc <- factor(dat$alloc)
Run rma
rma.model <- rma(y = dat$yi, mods = dat[, c("ablat", "year")], vi = dat$vi)
R^2 is estimated to be .64

PartialDependence 11

rma.model$R2
Now, use cross-validation to see how well this model generalizes
Leave-one-out cross-validation is more appropriate than 10-fold cv because
the sample size is very small
fit_control <- trainControl(method = "LOOCV")
Train the model without tuning, because rma has no tuning parameters
cv.mf.cluster <- train(y = dat$yi, x = dat[, c("ablat", "year")],

weights = dat$vi,
method = ModelInfo_rma(),
trControl = fit_control)

Cross-validated R^2 is .08, suggesting substantial overfitting of the
original rma model
cv.mf.cluster$results$Rsquared

End(Not run)

PartialDependence PartialDependence: Partial dependence plots

Description

Partial dependence plots

Usage

PartialDependence(
x,
vars = NULL,
pi = NULL,
rawdata = FALSE,
bw = FALSE,
resolution = NULL,
moderator = NULL,
mod_levels = NULL,
output = "plot",
...

)

Arguments

x Model object.

vars Character vector containing the moderator names for which to plot partial de-
pendence plots. If empty, all moderators are plotted.

pi Numeric (0-1). What percentile interval should be plotted for the partial depen-
dence predictions? Defaults to NULL. To obtain a 95% interval, set to .95.

rawdata Logical, indicating whether to plot weighted raw data. Defaults to FALSE. Uses
the same weights as the model object passed to the x argument.

12 PartialDependence

bw Logical, indicating whether the plot should be black and white, or color.

resolution Integer vector of length two, giving the resolution of the partial predictions. The
first element indicates the resolution of the partial predictions; for Monte-Carlo
integration, the second element gives the number of rows of the data to be sam-
pled without replacement when averaging over values of the other predictors.

moderator Atomic character vector, referencing the name of one variable in the model.
Results in partial prediction plots, conditional on the moderator. If moderator
references a factor variable, separate lines/boxplots are plotted for each factor
level. If moderator references a numeric variable, heatmaps are plotted - unless
the moderator is categorized using the mod_levels argument.

mod_levels Vector. If moderator is continuous, specify thresholds for the cut function.
The continuous moderator is categorized, and predictions are based on the me-
dian moderator value within each category. You can call quantile to cut the
moderator at specific quantiles. If moderator is a factor variable, you can use
mod_levels to specify a character vector with the factor levels to retain in the
plot (i.e., dropping the other factor levels).

output Character. What type of output should be returned? Defaults to "plot", which
returns and plots a gtable object. To obtain a list of ggplot objects instead,
provide the argument "list".

... Additional arguments to be passed to and from functions.

Details

Plots partial dependence plots (predicted effect size as a function of the value of each predictor
variable) for a MetaForest- or rma model object. For rma models, it is advisable to mean-center
numeric predictors, and to not include plot_int effects, except when the rma model is bivariate, and
the plot_int argument is set to TRUE.

Value

A gtable object.

Examples

Not run:
#' # Partial dependence plot for MetaForest() model:
set.seed(42)
data <- SimulateSMD(k_train = 200, model = es * x[, 1] + es * x[, 2] + es *

x[, 1] * x[, 2])$training
data$X2 <- cut(data$X2, breaks = 2, labels = c("Low", "High"))
mf.random <- MetaForest(formula = yi ~ ., data = data,

whichweights = "random", method = "DL",
tau2 = 0.2450)

Examine univariate partial dependence plot for all variables in the model:
PartialDependence(mf.random, pi = .8)
Examine bivariate partial dependence plot the plot_int between X1 and X2:
pd.plot <- PartialDependence(mf.random, vars = c("X1", "X2"), plot_int = TRUE)
Save to pdf file
pdf("pd_plot.pdf")

plot.MetaForest 13

grid.draw(pd.plot)
dev.off()
Partial dependence plot for metafor rma() model:
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg)
dat$yi <- as.numeric(dat$yi)
dat$alloc <- factor(dat$alloc)
dat$ablat_d <- cut(dat$ablat, breaks = 2, labels = c("low", "high"))
Demonstrate partial dependence plot for a bivariate plot_int
rma.model.int <- rma(yi, vi, mods=cbind(ablat, tpos),

data=dat, method="REML")
PartialDependence(rma.model.int, rawdata = TRUE, pi = .95,

plot_int = TRUE)

Compare partial dependence for metaforest and rma
dat2 <- dat
dat2[3:7] <- lapply(dat2[3:7],

function(x){as.numeric(scale(x, scale = FALSE))})
mf.model.all <- MetaForest(yi ~ ., dat2[, c(3:11)])
rma.model.all <- rma(dat$yi, dat2$vi,

mods = model.matrix(yi~., dat2[, c(3:10)])[, -1],
method="REML")

PartialDependence(mf.model.all, rawdata = TRUE, pi = .95)
PartialDependence(rma.model.all, rawdata = TRUE, pi = .95)

End(Not run)

plot.MetaForest Plots cumulative MSE for a MetaForest object.

Description

Plots cumulative MSE for a MetaForest object.

Usage

S3 method for class 'MetaForest'
plot(x, y, ...)

Arguments

x MetaForest object.

y not used for plot.MetaForest

... Arguments to be passed to methods, not used for plot.MetaForest

Value

A ggplot object, visualizing the number of trees on the x-axis, and the cumulative mean of the MSE
of that number of trees on the y-axis. As a visual aid to assess convergence, a dashed gray line is
plotted at the median cumulative MSE value.

14 predict.MetaForest

Examples

predict.MetaForest MetaForest prediction

Description

MetaForest prediction

Usage

S3 method for class 'MetaForest'
predict(object, data = NULL, type = "response", ...)

Arguments

object MetaForest object.

data New test data of class data.frame.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’ with default ’re-
sponse’. See below for details.

... further arguments passed to or from other methods.

Value

Object of class MetaForest.prediction with elements

predictions Predicted classes/values (only for classification and regression)
num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.

See Also

ranger

Examples

set.seed(56)
data <- SimulateSMD(k_train = 100, model = es * x[,1] * x[,2])
#Conduct fixed-effects MetaForest analysis
mf.fixed <- MetaForest(formula = yi ~ ., data = data$training,

whichweights = "fixed", method = "DL")
predicted <- predict(mf.fixed, data = data$testing)$predictions
r2_cv <- sum((predicted - mean(data$training$yi)) ^ 2)/

sum((data$testing$yi - mean(data$training$yi)) ^ 2)

preselect 15

preselect Preselect variables for MetaForest analysis

Description

Takes a MetaForest object, and applies different algorithms for variable selection.

Usage

preselect(x, replications = 100L, algorithm = "replicate", ...)

Arguments

x Model to perform variable selection for. Accepts MetaForest objects.

replications Integer. Number of replications to run for variable preselection. Default: 100.

algorithm Character. Preselection method to apply. Currently, ’replicate’, ’recursive’, and
’bootstrap’ are available.

... Other arguments to be passed to and from functions.

Details

Currently, available methods under algorithm are:

replicate This simply replicates the analysis, which means the forest has access to the full data
set, but the trees are grown on different bootstrap samples across replications (thereby varying
monte carlo error).

bootstrap This replicates the analysis on bootstrapped samples, which means each replication has
access to a different sub-sample of the full data set. When selecting this algorithm, cases
are either bootstrap-sampled by study, or a new study column is generated, and a clustered
MetaForest is grown (because some of the rows in the data will be duplicated) , and this would
lead to an under-estimation of the OOB error.

recursive Starting with all moderators, the variable with the most negative variable importance is
dropped from the model, and the analysis re-run. This is repeated until only variables with a
positive variable importance are left, or no variables are left. The proportion of final models
containing each variable reflects its importance.

Value

An object of class ’mf_preselect’

Examples

Not run:
data <- get(data(dat.bourassa1996))
data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di= rh.re,

data = data, add = 1/2, to = "all")
data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE)

16 preselect_vars

data[c(5:8)] <- lapply(data[c(5:8)], factor)
data$yi <- as.numeric(data$yi)
mf.model <- MetaForest(formula = yi~ selection + investigator + hand_assess + eye_assess +

mage +sex,
data, study = "sample",
whichweights = "unif", num.trees = 300)

preselect(mf.model,
replications = 10,
algorithm = "bootstrap")

End(Not run)

preselect_vars Extract variable names from mf_preselect object

Description

Returns a vector of variable names from an mf_preselect object, based on a cutoff criterion provided.

Usage

preselect_vars(x, cutoff = NULL, criterion = NULL)

Arguments

x Object of class mf_preselect.

cutoff Numeric. Must be a value between 0 and 1. By default, uses .95 for bootstrapped
preselection, and .1 for recursive preselection.

criterion Character. Which criterion to use. See Details for more information. By
default, uses ’ci’ (confidence interval) for bootstrapped preselection, and ’p’
(proportion) for recursive preselection.

Details

For criterion = 'p', the function evaluates the proportion of replications in which a variable
achieved a positive (>0) variable importance. For criterion = 'ci', the function evaluates whether
the lower bound of a confidence interval of a variable’s importance across replications exceeds zero.
The width of the confidence interval is determined by cutoff.

For recursive preselection, any variable not included in a final model is assigned zero importance.

Value

Character vector.

print.summary.MetaForest 17

Examples

Not run:
data <- get(data(dat.bourassa1996))
data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di= rh.re,

data = data, add = 1/2, to = "all")
data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE)
data[c(5:8)] <- lapply(data[c(5:8)], factor)
data$yi <- as.numeric(data$yi)
preselected <- preselect(formula = yi~ selection + investigator + hand_assess + eye_assess +

mage +sex,
data, study = "sample",
whichweights = "unif", num.trees = 300,
replications = 10,
algorithm = "bootstrap")

preselect_vars(preselected)

End(Not run)

print.summary.MetaForest

Prints summary.MetaForest object.

Description

Prints summary.MetaForest object.

Usage

S3 method for class 'summary.MetaForest'
print(x, digits, ...)

Arguments

x an object used to select a method.

digits minimal number of significant digits, see print.default.

... further arguments passed to or from other methods.

Examples

18 SimulateSMD

SimulateSMD Simulates a meta-analytic dataset

Description

This function simulates a meta-analytic dataset based on the random-effects model. The simulated
effect size is Hedges’ G, an estimator of the Standardized Mean Difference. The functional form
of the model can be specified, and moderators can be either normally distributed or Bernoulli-
distributed. See Van Lissa, 2018, for a detailed explanation of the simulation procedure.

Usage

SimulateSMD(
k_train = 20,
k_test = 100,
mean_n = 40,
es = 0.5,
tau2 = 0.04,
moderators = 5,
distribution = "normal",
model = es * x[, 1]

)

Arguments

k_train Atomic integer. The number of studies in the training dataset. Defaults to 20.
k_test Atomic integer. The number of studies in the testing dataset. Defaults to 100.
mean_n Atomic integer. The mean sample size of each simulated study in the meta-

analytic dataset. Defaults to 40. For each simulated study, the sample size
n is randomly drawn from a normal distribution with mean mean_n, and sd
mean_n/3.

es Atomic numeric vector. The effect size, also known as beta, used in the model
statement. Defaults to .5.

tau2 Atomic numeric vector. The residual heterogeneity. Defaults to 0.04.
moderators Atomic integer. The number of moderators to simulate for each study. Make

sure that the number of moderators to be simulated is at least as large as the
number of moderators referred to in the model parameter. Internally, the matrix
of moderators is referred to as "x". Defaults to 5.

distribution Atomic character. The distribution of the moderators. Can be set to either "nor-
mal" or "bernoulli". Defaults to "normal".

model Expression. An expression to specify the model from which to simulate the
mean true effect size, mu. This formula may use the terms "es" (referring to the
es parameter of the call to SimulateSMD), and "x[,]" (referring to the matrix of
moderators, x). Thus, to specify that the mean effect size, mu, is a function of
the effect size and the first moderator, one would pass the value model = es * x[
, 1]. Defaults to es * x[, 1].

VarImpPlot 19

Value

List of length 4. The "training" element of this list is a data.frame with k_train rows. The columns
are the variance of the effect size, vi; the effect size, yi, and the moderators, X. The "testing" element
of this list is a data.frame with k_test rows. The columns are the effect size, yi, and the moderators,
X. The "housekeeping" element of this list is a data.frame with k_train + k_test rows. The columns
are n, the sample size n for each simulated study; mu_i, the mean true effect size for each simulated
study; and theta_i, the true effect size for each simulated study.

References

Van Lissa, C. J. (2020). Small sample meta-analyses: exploring heterogeneity using metaForest.
In R. Van De Schoot & M. Miočević (Eds.), Small sample size solutions (open access): A guide
for applied researchers and practitioners. CRC Press (pp.186–202). doi:10.4324/9780429273872-
16 Van Lissa, C. J. (2018). MetaForest: Exploring heterogeneity in meta-analysis using random
forests. PsyArxiv. doi:10.31234/osf.io/myg6s

Examples

set.seed(8)
SimulateSMD()
SimulateSMD(k_train = 50, distribution = "bernoulli")
SimulateSMD(distribution = "bernoulli", model = es * x[,1] * x[,2])

VarImpPlot Plots variable importance for a MetaForest object.

Description

Plots variable importance for a MetaForest object.

Usage

VarImpPlot(mf, n.var = 30, sort = TRUE, ...)

Arguments

mf MetaForest object.

n.var Number of moderators to plot.

sort Should the moderators be sorted from most to least important?

... Parameters passed to and from other functions.

Value

A ggplot object.

https://doi.org/10.4324/9780429273872-16
https://doi.org/10.4324/9780429273872-16
https://doi.org/10.31234/osf.io/myg6s

20 WeightedScatter

Examples

set.seed(42)
data <- SimulateSMD()
mf.random <- MetaForest(formula = yi ~ ., data = data$training,

whichweights = "random", method = "DL",
tau2 = 0.0116)

VarImpPlot(mf.random)
VarImpPlot(mf.random, n.var = 2)
VarImpPlot(mf.random, sort = FALSE)

WeightedScatter Plots weighted scatterplots for meta-analytic data. Can plot effect size
as a function of either continuous (numeric, integer) or categorical
(factor, character) predictors.

Description

Plots weighted scatterplots for meta-analytic data. Can plot effect size as a function of either con-
tinuous (numeric, integer) or categorical (factor, character) predictors.

Usage

WeightedScatter(
data,
yi = "yi",
vi = "vi",
vars = NULL,
tau2 = NULL,
summarize = TRUE

)

Arguments

data A data.frame.

yi Character. The name of the column in data that contains the meta-analysis
effect sizes. Defaults to "yi".

vi Character. The name of the column in the data that contains the variances of the
effect sizes. Defaults to "vi". By default, vi is used to calculate fixed-effects
weights, because fixed effects weights summarize the data set at hand, rather
than generalizing to the population.

vars Character vector containing the names of specific moderator variables to plot.
When set to NULL, the default, all moderators are plotted.

tau2 Numeric. Provide an optional value for tau2. If this value is provided, random-
effects weights will be used instead of fixed-effects weights.

WeightedScatter 21

summarize Logical. Should summary stats be displayed? Defaults to FALSE. If TRUE,
a smooth trend line is displayed for continuous variables, using [stats::loess()]
for less than 1000 observations, and [mgcv::gam()] for larger datasets. For cat-
egorical variables, box-and-whiskers plots are displayed. Outliers are omitted,
because the raw data fulfill this function.

Value

A gtable object.

Examples

Not run:
set.seed(42)
data <- SimulateSMD(k_train = 100, model = es * x[, 1] + es * x[, 2] + es *

x[, 1] * x[, 2])$training
data$X2 <- cut(data$X2, breaks = 2, labels = c("Low", "High"))
data$X3 <- cut(data$X3, breaks = 2, labels = c("Small", "Big"))
WeightedScatter(data, summarize = FALSE)
WeightedScatter(data, vars = c("X3"))
WeightedScatter(data, vars = c("X1", "X3"))

End(Not run)

Index

∗ datasets
curry, 3
fukkink_lont, 5

coef_test, 2
curry, 3
cut, 12

extract_proximity, 4

fukkink_lont, 5

metafor, 6, 7
MetaForest, 6, 15
ModelInfo_mf, 8
ModelInfo_rma, 10

PartialDependence, 11
plot.MetaForest, 13
predict.MetaForest, 14
preselect, 15
preselect_vars, 16
print.summary.MetaForest, 17

quantile, 12

ranger, 6, 7, 14

SimulateSMD, 18

VarImpPlot, 19

WeightedScatter, 20

22

	coef_test
	curry
	extract_proximity
	fukkink_lont
	MetaForest
	ModelInfo_mf
	ModelInfo_rma
	PartialDependence
	plot.MetaForest
	predict.MetaForest
	preselect
	preselect_vars
	print.summary.MetaForest
	SimulateSMD
	VarImpPlot
	WeightedScatter
	Index

