Package: tidyLPA 2.0.0

Joshua M Rosenberg

tidyLPA: Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software

Easily carry out latent profile analysis ("LPA"), determine the correct number of classes based on best practices, and tabulate and plot the results. Provides functionality to estimate commonly-specified models with free means, variances, and covariances for each profile. Follows a tidy approach, in that output is in the form of a data frame that can subsequently be computed on. Models can be estimated using the free open source 'R' packages 'Mclust' and 'OpenMx', or using the commercial program 'MPlus', via the 'MplusAutomation' package.

Authors:Joshua M Rosenberg [aut, cre], Caspar van Lissa [aut], Jennifer A Schmidt [ctb], Patrick N Beymer [ctb], Daniel Anderson [ctb], Matthew J. Schell [ctb]

tidyLPA_2.0.0.tar.gz
tidyLPA_2.0.0.zip(r-4.5)tidyLPA_2.0.0.zip(r-4.4)tidyLPA_2.0.0.zip(r-4.3)
tidyLPA_2.0.0.tgz(r-4.4-any)tidyLPA_2.0.0.tgz(r-4.3-any)
tidyLPA_2.0.0.tar.gz(r-4.5-noble)tidyLPA_2.0.0.tar.gz(r-4.4-noble)
tidyLPA_2.0.0.tgz(r-4.4-emscripten)tidyLPA_2.0.0.tgz(r-4.3-emscripten)
tidyLPA.pdf |tidyLPA.html
tidyLPA/json (API)
NEWS

# Install 'tidyLPA' in R:
install.packages('tidyLPA', repos = c('https://cjvanlissa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/data-edu/tidylpa/issues

Pkgdown site:https://data-edu.github.io

Datasets:
  • curry_mac - Simulated MAC data
  • empathy - Simulated empathy data
  • id_edu - Simulated identity data
  • pisaUSA15 - Student questionnaire data with four variables from the 2015 PISA for students in the United States

On CRAN:

5.80 score 1 stars 111 scripts 1.9k downloads 19 mentions 13 exports 132 dependencies

Last updated 2 years agofrom:e62d7a92eb. Checks:1 OK, 6 WARNING. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 16 2025
R-4.5-winWARNINGJan 16 2025
R-4.5-linuxWARNINGJan 16 2025
R-4.4-winWARNINGJan 16 2025
R-4.4-macWARNINGJan 16 2025
R-4.3-winWARNINGJan 16 2025
R-4.3-macWARNINGJan 16 2025

Exports:%>%AHPcalc_lrtcompare_solutionsestimate_profilesget_dataget_estimatesget_fitplot_bivariateplot_densityplot_profilespomssingle_imputation

Dependencies:abindaskpassbackportsbainbayesplotBHblavaanbootbroomcallrcarcarDatacheckmateclicodacodetoolscolorspaceCompQuadFormcowplotcpp11curldata.tabledbscanDerivdescdigestdistributionaldoBydplyrfansifarverfastDummiesFormulafuturefuture.applygenericsggplot2ggridgesglobalsglueGPArotationgridExtragsubfngtablehttrigraphinlineisobandjsonlitelabelinglatticelavaanlifecyclelistenvlme4loomagrittrMASSMatrixMatrixModelsmatrixStatsmclustmgcvmicrobenchmarkmimeminqamixmnormtmodelrMplusAutomationmunsellmvtnormnlmenloptrnnetnonnest2numDerivOpenMxopensslpanderparallellypbivnormpbkrtestpillarpkgbuildpkgconfigplyrposteriorprocessxprogressrprotopspsychpurrrquadprogquantregQuickJSRR6RANNrbibutilsRColorBrewerRcppRcppEigenRcppParallelRdpackreformulasreshape2rlangrpfrstanrstantoolssandwichscalesSparseMStanHeadersstringistringrsurvivalsystensorAtexregtibbletidyrtidyselecttidySEMtmvnsimutf8vctrsviridisLitewithrxtablezoo

Benchmarking mclust and MPlus

Rendered frombenchmarking-mclust-and-mplus.Rmdusingknitr::rmarkdownon Jan 16 2025.

Last update: 2021-06-03
Started: 2019-07-19

Introduction to tidyLPA

Rendered fromIntroduction_to_tidyLPA.Rmdusingknitr::rmarkdownon Jan 16 2025.

Last update: 2021-06-03
Started: 2017-10-28