Package: tidyLPA 2.0.0

Joshua M Rosenberg

tidyLPA: Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software

Easily carry out latent profile analysis ("LPA"), determine the correct number of classes based on best practices, and tabulate and plot the results. Provides functionality to estimate commonly-specified models with free means, variances, and covariances for each profile. Follows a tidy approach, in that output is in the form of a data frame that can subsequently be computed on. Models can be estimated using the free open source 'R' packages 'Mclust' and 'OpenMx', or using the commercial program 'MPlus', via the 'MplusAutomation' package.

Authors:Joshua M Rosenberg [aut, cre], Caspar van Lissa [aut], Jennifer A Schmidt [ctb], Patrick N Beymer [ctb], Daniel Anderson [ctb], Matthew J. Schell [ctb]

tidyLPA_2.0.0.tar.gz
tidyLPA_2.0.0.zip(r-4.5)tidyLPA_2.0.0.zip(r-4.4)tidyLPA_2.0.0.zip(r-4.3)
tidyLPA_2.0.0.tgz(r-4.4-any)tidyLPA_2.0.0.tgz(r-4.3-any)
tidyLPA_2.0.0.tar.gz(r-4.5-noble)tidyLPA_2.0.0.tar.gz(r-4.4-noble)
tidyLPA_2.0.0.tgz(r-4.4-emscripten)tidyLPA_2.0.0.tgz(r-4.3-emscripten)
tidyLPA.pdf |tidyLPA.html
tidyLPA/json (API)
NEWS

# Install 'tidyLPA' in R:
install.packages('tidyLPA', repos = c('https://cjvanlissa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/data-edu/tidylpa/issues

Datasets:
  • curry_mac - Simulated MAC data
  • empathy - Simulated empathy data
  • id_edu - Simulated identity data
  • pisaUSA15 - Student questionnaire data with four variables from the 2015 PISA for students in the United States

On CRAN:

5.93 score 1 stars 104 scripts 2.7k downloads 19 mentions 13 exports 129 dependencies

Last updated 2 years agofrom:e62d7a92eb. Checks:OK: 1 WARNING: 6. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winWARNINGNov 17 2024
R-4.5-linuxWARNINGNov 17 2024
R-4.4-winWARNINGNov 17 2024
R-4.4-macWARNINGNov 17 2024
R-4.3-winWARNINGNov 17 2024
R-4.3-macWARNINGNov 17 2024

Exports:%>%AHPcalc_lrtcompare_solutionsestimate_profilesget_dataget_estimatesget_fitplot_bivariateplot_densityplot_profilespomssingle_imputation

Dependencies:abindaskpassbackportsbainbayesplotBHblavaanbootbroomcallrcarcarDatacheckmateclicodacodetoolscolorspaceCompQuadFormcowplotcpp11curldata.tabledbscanDerivdescdigestdistributionaldoBydplyrfansifarverfastDummiesFormulafuturefuture.applygenericsggplot2ggridgesglobalsglueGPArotationgridExtragsubfngtablehttrigraphinlineisobandjsonlitelabelinglatticelavaanlifecyclelistenvlme4loomagrittrMASSMatrixMatrixModelsmatrixStatsmclustmgcvmicrobenchmarkmimeminqamixmnormtmodelrMplusAutomationmunsellmvtnormnlmenloptrnnetnonnest2numDerivOpenMxopensslpanderparallellypbivnormpbkrtestpillarpkgbuildpkgconfigplyrposteriorprocessxprogressrprotopspsychpurrrquadprogquantregQuickJSRR6RANNRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrpfrstanrstantoolssandwichscalesSparseMStanHeadersstringistringrsurvivalsystensorAtexregtibbletidyrtidyselecttidySEMtmvnsimutf8vctrsviridisLitewithrxtablezoo

Benchmarking mclust and MPlus

Rendered frombenchmarking-mclust-and-mplus.Rmdusingknitr::rmarkdownon Nov 17 2024.

Last update: 2021-06-03
Started: 2019-07-19

Introduction to tidyLPA

Rendered fromIntroduction_to_tidyLPA.Rmdusingknitr::rmarkdownon Nov 17 2024.

Last update: 2021-06-03
Started: 2017-10-28