Title: | Tidy Structural Equation Modeling |
---|---|
Description: | A tidy workflow for generating, estimating, reporting, and plotting structural equation models using 'lavaan', 'OpenMx', or 'Mplus'. Throughout this workflow, elements of syntax, results, and graphs are represented as 'tidy' data, making them easy to customize. Includes functionality to estimate latent class analyses. |
Authors: | Caspar J. van Lissa [aut, cre] , Mauricio Garnier-Villarreal [ctb] , Frank C Gootjes [ctb] |
Maintainer: | Caspar J. van Lissa <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.2.7 |
Built: | 2025-01-16 13:34:14 UTC |
Source: | https://github.com/cjvanlissa/tidySEM |
Add paths to an object of class tidy_sem
, or replace
existing paths. The paths must be specified as
lavaan::model.syntax
, and separated by commas.
add_paths(model, ...)
add_paths(model, ...)
model |
An object of class |
... |
Paths to add or substitute, specified in
|
Currently, only the
lavaan::lavaan()
commands ~,
~~, =~,
and ~1
are parsed.
This function relies on
lavaan::model.syntax
to convert syntax strings
to lavaan
parameter tables. By default, is uses the arguments
int.ov.free = TRUE, int.lv.free = FALSE, auto.fix.first = TRUE,
auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE,
auto.efa = TRUE, auto.th = TRUE, auto.delta = TRUE, auto.cov.y = TRUE,
meanstructure = TRUE
, in a similar way
to lavaan::sem()
and lavaan::cfa()
.
An object of class tidy_sem
.
library(lavaan) df <- iris[, 1:4] names(df) <- paste0("x_", 1:4) model <- tidy_sem(df) model <- measurement(model) model <- add_paths(model, x =~ a*x_1 + b*x_2 + a*x_3 + b*x_4) res <- estimate_lavaan(model) summary(res)
library(lavaan) df <- iris[, 1:4] names(df) <- paste0("x_", 1:4) model <- tidy_sem(df) model <- measurement(model) model <- add_paths(model, x =~ a*x_1 + b*x_2 + a*x_3 + b*x_4) res <- estimate_lavaan(model) summary(res)
These data were collected by Alkema during a cruise from 04/2018 to 06/2018 traversing the Atlantic Ocean from South Africa to Norway. A 500 micrometer meshed Manta Trawl was towed outside the wake of the ship for 1 h each day. Length, width, height and polymer type of 6.942 particles were measured using infrared spectroscopy and image analysis.
data(alkema_microplastics)
data(alkema_microplastics)
A data frame with 6942 rows and 11 variables.
current | factor |
Which ocean current the sample was taken from |
sample | integer |
Sample ID |
length | numeric |
Particle length in mm |
width | numeric |
Particle width in mm |
height_est | numeric |
Estimated particle height in mm |
height_obs | numeric |
Observed particle height in mm. Height was only measured for large particles |
category | factor |
Particle category based on visual inspection |
poly_type | factor |
Polymer type as determined by near infrared spectroscopy (NIR) |
two_dim | logical |
Whether or not the particle can be treated as two-dimensional |
film | logical |
Whether or not the particle appears to be a film |
line | logical |
Whether or not the particle appears to be a line |
Alkema, L. M., Van Lissa, C. J., Kooi, M., & Koelmans, A. A. (2022). Maximizing Realism: Mapping Plastic Particles at the Ocean Surface Using Mixtures of Normal Distributions. Environmental Science & Technology, 56(22), 15552-15562. doi:10.1021/acs.est.2c03559
Generates m
datasets with random draws of a variable named class
, with
probability for these draws based on each case's probability of belonging to
that class according to the model in x
.
append_class_draws(x, data = NULL, m = 20)
append_class_draws(x, data = NULL, m = 20)
x |
An object for which a method exists, usually a |
data |
A data.frame which the |
m |
Integer. Number of datasets to generate. Default is 10. |
A data.frame of class class_draws
.
dat <- iris[c(1:5, 50:55, 100:105),1:3] colnames(dat) <- letters[1:3] fit <- mx_profiles(data = dat, classes = 2) append_class_draws(fit, data = iris[c(1:5, 50:55, 100:105), 4, drop = FALSE])
dat <- iris[c(1:5, 50:55, 100:105),1:3] colnames(dat) <- letters[1:3] fit <- mx_profiles(data = dat, classes = 2) append_class_draws(fit, data = iris[c(1:5, 50:55, 100:105), 4, drop = FALSE])
Final stage in the 'tidySEM' workflow for syntax generation:
Convert the tidy_sem
object to lavaan
syntax in tabular format
(see model.syntax
).
as_lavaan(x, ...)
as_lavaan(x, ...)
x |
An object of class |
... |
Additional parameters to be passed to and from functions. |
Character vector.
mod <- list(syntax = structure(list(lhs = "x", op = "~", rhs = "y", free = TRUE, value = "", label = "", category = "", aspect = ""), class = "data.frame", row.names = c(NA, -1L))) class(mod) <- "tidy_sem" as_lavaan(mod)
mod <- list(syntax = structure(list(lhs = "x", op = "~", rhs = "y", free = TRUE, value = "", label = "", category = "", aspect = ""), class = "data.frame", row.names = c(NA, -1L))) class(mod) <- "tidy_sem" as_lavaan(mod)
Final stage in the 'tidySEM' workflow for syntax generation:
Convert the tidy_sem
object to 'Mplus' syntax.
as_mplus(x, ...)
as_mplus(x, ...)
x |
An object of class |
... |
Additional parameters to be passed to and from functions. |
Character vector.
mod <- list(syntax = structure(list(lhs = "x", op = "~", rhs = "y", free = TRUE, value = "", label = "", category = "", aspect = ""), class = "data.frame", row.names = c(NA, -1L))) class(mod) <- "tidy_sem" as_mplus(mod)
mod <- list(syntax = structure(list(lhs = "x", op = "~", rhs = "y", free = TRUE, value = "", label = "", category = "", aspect = ""), class = "data.frame", row.names = c(NA, -1L))) class(mod) <- "tidy_sem" as_mplus(mod)
Converts SEM models to RAM models for
OpenMx
.
as_ram(x, ...)
as_ram(x, ...)
x |
An object for which a method exists, such as a |
... |
Parameters passed on to other functions. |
For models specified using lavaan syntax, the procedure is as follows:
Apply lavaanify
to the model
. The default
arguments to lavaanify
correspond to those of the
sem
function.
Convert each row of the resulting lavaan parameter table to a
mxPath
.
Apply mxModel
to the mxPath
s to create
an OpenMx
model using RAM specification
Returns an mxModel
.
as_ram("y ~ x")
as_ram("y ~ x")
Estimate an auxiliary model based on a latent classification
by means of mixture modeling (see mx_mixture
).
The auxiliary model is treated as a multi-group model. All cases are used in all groups, but they are weighted by group-specific BCH weights as described in Bolck, Croon, & Hagenaars, 2004.
BCH(x, model, data, ...)
BCH(x, model, data, ...)
x |
An object for which a method exists. |
model |
An object that can be converted to an |
data |
A data.frame on which the auxiliary model can be evaluated. |
... |
further arguments to be passed to or from other methods. |
An MxModel.
Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27. doi:10.1093/pan/mph001
dat <- data.frame(x = iris$Petal.Length) mixmod <- mx_profiles(dat, classes = 2) res <- BCH(mixmod, "y ~ 1", data = data.frame(y = iris$Sepal.Length))
dat <- data.frame(x = iris$Petal.Length) mixmod <- mx_profiles(dat, classes = 2) res <- BCH(mixmod, "y ~ 1", data = data.frame(y = iris$Sepal.Length))
Conduct Bootstrapped Likelihood Ratio Test to compare two mixture models.
BLRT(x, replications = 100, ...)
BLRT(x, replications = 100, ...)
x |
An object for which a method exists. |
replications |
Integer reflecting the number of bootstrapped
replications, defaults to |
... |
further arguments to be passed to or from other methods. |
A data.frame.
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" res <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1:2, data = df) BLRT(res, replications = 4) ## End(Not run)
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" res <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1:2, data = df) BLRT(res, replications = 4) ## End(Not run)
Obtain latent class probabilities for an object for which a method exists. See Details.
class_prob( x, type = c("sum.posterior", "sum.mostlikely", "mostlikely.class", "avg.mostlikely", "individual"), ... )
class_prob( x, type = c("sum.posterior", "sum.mostlikely", "mostlikely.class", "avg.mostlikely", "individual"), ... )
x |
An object for which a method exists. |
type |
Character vector, indicating which types of probabilities to extract. See Details. |
... |
Further arguments to be passed to or from other methods. |
The following types are available:
A summary table of the posterior class probabilities; this indicates what proportion of your data contributes to each class.
A summary table of the most likely class membership, based on the highest posterior class probability. Note that this is subject to measurement error.
If C is the true class of an observation, and N is the most likely class based on the model, then this table shows the probability P(N==i|C==j). The diagonal represents the probability that observations in each class will be correctly classified.
Average posterior probabilities for each class, for the subset of observations with most likely class of 1:k, where k is the number of classes.
The posterior probability matrix, with dimensions n (number of cases in the data) x k (number of classes).
A data.frame.
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" res <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1, data = df) class_prob(res) ## End(Not run)
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" res <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1, data = df) class_prob(res) ## End(Not run)
Creates 'APA'-formatted confidence intervals, either from an object for which
a method exists, or from the arguments lb
and ub
. When argument
x
is a numeric vector, it is also possible to construct a confidence
interval using the standard error (se
) and a percentile interval
(ci
).
conf_int(x, digits = 2, se = NULL, lb = NULL, ub = NULL, ci = 95)
conf_int(x, digits = 2, se = NULL, lb = NULL, ub = NULL, ci = 95)
x |
Optional. An object for which a method exists. |
digits |
Integer. The number of digits to round the confidence boundaries to. |
se |
Optional, numeric. Standard error of the parameters. |
lb |
Optional, numeric. Lower boundary of confidence intervals. |
ub |
Optional, numeric. Upper boundary of confidence intervals. |
ci |
Optional, numeric. What percentage CI to use (only used when
computing CI from a numeric vector |
A character vector of formatted confidence intervals.
Caspar J. van Lissa
table_results est_sig
Other Reporting tools:
est_sig()
,
table_fit()
,
table_prob()
,
table_results()
conf_int(x = c(1.325, 2.432), se = c(.05336, .00325))
conf_int(x = c(1.325, 2.432), se = c(.05336, .00325))
Generate syntax for correlations between variables.
cors(x, ...)
cors(x, ...)
x |
Object for which a method exists. If |
... |
Optional additional character vectors of variables to be
correlated. If |
An object of class tidy_sem
.
dict <- tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5")) cors(dict, c("bfi_1", "bfi_2"))
dict <- tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5")) cors(dict, c("bfi_1", "bfi_2"))
This function calculates mean or sum scores from a
data.frame
and a named list describing the items in each scale. It
returns the scores, a scale descriptive table, and a scale correlation table.
It relies on several functions from the
psych
package.
create_scales( x, keys.list, missing = TRUE, impute = "none", omega = NULL, digits = 2, ... ) ## S3 method for class 'tidy_sem' create_scales( x, keys.list, missing = TRUE, impute = "none", omega = NULL, digits = 2, ... )
create_scales( x, keys.list, missing = TRUE, impute = "none", omega = NULL, digits = 2, ... ) ## S3 method for class 'tidy_sem' create_scales( x, keys.list, missing = TRUE, impute = "none", omega = NULL, digits = 2, ... )
x |
A |
keys.list |
A named list, indicating which variables belong to which scale. |
missing |
Whether to use rows with partially missing values. Default: TRUE. |
impute |
Method for handling missing values, Default: 'none'. This default method uses all available data to calculate scale scores, which is acceptable for mean scales, but not for sum scales. |
omega |
Which of McDonald's |
digits |
Number of digits for rounding, Default: 2 |
... |
Additional parameters to pass to and from functions. |
For scales with less than 3 items, Cronbach's alpha might not be suitable as an estimate of reliability. For such scales, the Spearman-Brown reliability coefficient for two-item scales is computed, as described in Eisinga, R., Grotenhuis, M. te, & Pelzer, B. (2012). The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? International Journal of Public Health, 58(4), 637–642. doi:10.1007/s00038-012-0416-3. These coefficients are marked with "(sb)".
List with elements: $descriptives
, $correlations
, and
$scores
.
out <- create_scales(iris, keys.list = list(scalename = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))) out$descriptives dict <- tidy_sem(iris, split = "\\.") create_scales(dict)
out <- create_scales(iris, keys.list = list(scalename = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))) out$descriptives dict <- tidy_sem(iris, split = "\\.") create_scales(dict)
This simulated dataset, based on Curry et al., 2019, contains data on moral relevance and judgment across the seven domains of the Morality As Cooperation scale.
data(curry_mac)
data(curry_mac)
A data.frame with 1392 rows and 42 variables.
sex | factor |
Self-identified sex of participants, Male, Female, or Transgendered. |
age_years | numeric |
Participants' age in years. |
KinshipR | numeric |
Mean score of moral relevance, kinship subscale. |
MutualismR | numeric |
Mean score of moral relevance, mutualism subscale. |
ExchangeR | numeric |
Mean score of moral relevance, exchange subscale. |
HawkR | numeric |
Mean score of moral relevance, hawk subscale. |
DoveR | numeric |
Mean score of moral relevance, dove subscale. |
DivisionR | numeric |
Mean score of moral relevance, division subscale. |
PossessionR | numeric |
Mean score of moral relevance, possession subscale. |
KinshipJ | numeric |
Mean score of moral judgment, kinship subscale. |
MutualismJ | numeric |
Mean score of moral judgment, mutualism subscale. |
ExchangeJ | numeric |
Mean score of moral judgment, exchange subscale. |
HawkJ | numeric |
Mean score of moral judgment, hawk subscale. |
DoveJ | numeric |
Mean score of moral judgment, dove subscale. |
DivisionJ | numeric |
Mean score of moral judgment, division subscale. |
PossessionJ | numeric |
Mean score of moral judgment, possession subscale. |
Curry, O. S., Jones Chesters, M., & Van Lissa, C. J. (2019). Mapping morality with a compass: Testing the theory of ‘morality-as-cooperation’ with a new questionnaire. Journal of Research in Personality, 78, 106–124. doi:10.1016/j.jrp.2018.10.008
This simulated dataset, based on the 'Mplus' User's Guide example 7.6, contains four columns of integer data that should be treated as ordinal.
data(data_mix_ordinal)
data(data_mix_ordinal)
A data frame with 5000 rows and 4 variables.
u1 | integer |
Indicator 1, should be treated as ordinal. |
u2 | integer |
Indicator 2, should be treated as ordinal. |
u3 | integer |
Indicator 3, should be treated as ordinal. |
u4 | integer |
Indicator 4, should be treated as ordinal. |
Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén
Provide descriptive statistics for a dataset.
descriptives(x, ...)
descriptives(x, ...)
x |
An object for which a method exists. |
... |
Additional arguments. |
A data.frame
with descriptive statistics for x
.
Its elements are:
name | Character |
Variable name |
type | character |
Data type in R , as obtained by class(x)[1]
|
n | Integer |
Number of valid observations |
missing | Numeric |
Proportion missing |
unique | Integer |
Number of unique values |
mean | numeric |
Mean value of non-missing entries, only defined for variables that can be coerced to numeric |
median | numeric |
Median value of non-missing entries, only defined for numeric variables |
mode | Integer |
For numeric variables: The mode value. For factors: The frequency of the mode value |
mode_value | Character |
For factors: value of the mode |
sd | numeric |
Standard deviation of non-missing entries, only defined for variables that can be coerced to numeric |
v | numeric |
Variability coefficient V for factor variables (Agresti, 1990). V is the probability that two independent observations fall in different categories |
min | numeric |
Minimum value for numeric variables |
max | numeric |
Maximum value for numeric variables |
range | numeric |
Range (distance between min and max) for numeric variables |
skew | numeric |
Skewness. The normalized third central moment of a numeric variable, which reflects its skewness. A symmetric distribution has a skewness of zero |
skew_2se | numeric |
Skewness, divided by two times its standard error. Values greater than one can be considered "significant" according to a Z-test with significance level of .05 |
kurt | numeric |
Kurtosis. The normalized fourth central moment of a numeric variable, which reflects its peakedness. A heavy-tailed distribution has high kurtosis, a light-tailed distribution has low kurtosis (sometimes called platykurtic). |
kurt_2se | numeric |
Kurtosis, divided by two times its standard error. Values greater than one can be considered "significant" according to a Z-test with significance level of .05 |
Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley & Sons.
descriptives(iris)
descriptives(iris)
Provides access to the dictionary
element of a
tidy_sem
object. This can be used to return or assign to the
dictionary
element.
dictionary(x) dictionary(x) <- value
dictionary(x) dictionary(x) <- value
x |
Object of class tidy_sem. |
value |
A valid value for |
data.frame
dict <- tidy_sem(iris, split = "\\.") dictionary(dict)
dict <- tidy_sem(iris, split = "\\.") dictionary(dict)
Provides access to the edges
element of a
sem_graph
object. This can be used to return or assign to the
edges
element.
edges(x) edges(x) <- value
edges(x) edges(x) <- value
x |
Object of class sem_graph. |
value |
A valid value for |
data.frame
edg <- data.frame(from = "x", to = "y") p <- prepare_graph(edges = edg, layout = get_layout("x", "y", rows = 1)) edges(p)
edg <- data.frame(from = "x", to = "y") p <- prepare_graph(edges = edg, layout = get_layout("x", "y", rows = 1)) edges(p)
Evaluate an R expression within the environment of the elements
of a sem_graph
object, and return the modified sem_graph
.
edit_graph(x, expr, element = c("edges", "nodes"), ...) edit_nodes(x, expr, ...) edit_edges(x, expr, ...)
edit_graph(x, expr, element = c("edges", "nodes"), ...) edit_nodes(x, expr, ...) edit_edges(x, expr, ...)
x |
An object of class |
expr |
expression to evaluate. |
element |
Character. The element of the |
... |
Arguments passed on to |
An object of class sem_graph
.
p <- prepare_graph(layout = get_layout("x", rows = 1)) p <- edit_graph(p, {colour = "blue"}, element = "nodes") plot(p)
p <- prepare_graph(layout = get_layout("x", rows = 1)) p <- edit_graph(p, {colour = "blue"}, element = "nodes") plot(p)
This simulated dataset, based on Van Lissa et al., 2014, contains six annual assessments of adolescents' mean scores on the empathic concern and perspective taking subscales of the Interpersonal Reactivity Index (Davis, 1983). The first measurement wave occurred when adolescents were, on average, 13 years old, and the last one when they were 18 years old.
data(empathy)
data(empathy)
A data frame with 467 rows and 13 variables.
ec1 | numeric |
Mean score of empathic concern in wave 1 |
ec2 | numeric |
Mean score of empathic concern in wave 2 |
ec3 | numeric |
Mean score of empathic concern in wave 3 |
ec4 | numeric |
Mean score of empathic concern in wave 4 |
ec5 | numeric |
Mean score of empathic concern in wave 5 |
ec6 | numeric |
Mean score of empathic concern in wave 6 |
pt1 | numeric |
Mean score of perspective taking in wave 1 |
pt2 | numeric |
Mean score of perspective taking in wave 2 |
pt3 | numeric |
Mean score of perspective taking in wave 3 |
pt4 | numeric |
Mean score of perspective taking in wave 4 |
pt5 | numeric |
Mean score of perspective taking in wave 5 |
pt6 | numeric |
Mean score of perspective taking in wave 6 |
sex | factor |
Adolescent sex; M = male, F = female. |
Van Lissa, C. J., Hawk, S. T., Branje, S. J., Koot, H. M., Van Lier, P. A., & Meeus, W. H. (2014). Divergence Between Adolescent and Parental Perceptions of Conflict in Relationship to Adolescent Empathy Development. Journal of Youth and Adolescence, (Journal Article), 1–14. doi:10.1007/s10964-014-0152-5
Takes an object, and adds significance asterisks.
est_sig(x, digits = 2, sig = NULL)
est_sig(x, digits = 2, sig = NULL)
x |
An object for which a method exists. This will be treated as numeric by the default method. |
digits |
Integer. The number of digits to round the estimate column to. |
sig |
Optional, a vector of p-values for the default method. |
A character vector of formatted estimates.
Caspar J. van Lissa
table_results
Other Reporting tools:
conf_int()
,
table_fit()
,
table_prob()
,
table_results()
est_sig(c(.222, .3333), sig = c(.054, .045))
est_sig(c(.222, .3333), sig = c(.054, .045))
This function is a wrapper for the lavaan
estimating functions. By default, the wrapper uses sem
,
but users can also specify lavaan
,
cfa
, or growth
.
estimate_lavaan(x, func = "sem", ...)
estimate_lavaan(x, func = "sem", ...)
x |
An object of class |
func |
The |
... |
Additional parameters passed to the estimating function. |
An object of class lavaan
.
library(lavaan) model <- tidy_sem(iris, "\\.") model <- measurement(model) res <- estimate_lavaan(model) summary(res)
library(lavaan) model <- tidy_sem(iris, "\\.") model <- measurement(model) res <- estimate_lavaan(model) summary(res)
This function is a wrapper for the functions
mplusObject
and
mplusModeler
. Using this function requires
'Mplus' to be installed.
estimate_mplus(x, ...)
estimate_mplus(x, ...)
x |
An object of class |
... |
Additional parameters passed to
|
The arguments dataout
, modelout
, and run
are
optional. If these are not specified, the model will be run in
tempdir
.
An object of class mplusObject
.
library(MplusAutomation) model <- tidy_sem(iris, "\\.") model <- measurement(model) ## Not run: estimate_mplus(model, run = 0L) ## End(Not run)
library(MplusAutomation) model <- tidy_sem(iris, "\\.") model <- measurement(model) ## Not run: estimate_mplus(model, run = 0L) ## End(Not run)
This function is a wrapper for the as_ram
and run_mx
functions.
estimate_mx(x, ...)
estimate_mx(x, ...)
x |
An object of class |
... |
Additional parameters passed to the estimating function. |
An object of class MxModel
.
df <- iris[1:4] names(df) <- paste0("x_", 1:4) model <- tidy_sem(df) model <- measurement(model) res <- estimate_mx(model) summary(res)
df <- iris[1:4] names(df) <- paste0("x_", 1:4) model <- tidy_sem(df) model <- measurement(model) res <- estimate_mx(model) summary(res)
Provides access to the data
element of a
tidy_sem
object. This can be used to return or assign to the
data
element.
get_data(x) get_data(x) <- value
get_data(x) get_data(x) <- value
x |
Object of class tidy_sem. |
value |
A valid value for |
data.frame
dict <- tidy_sem(iris, split = "\\.") get_data(dict)
dict <- tidy_sem(iris, split = "\\.") get_data(dict)
Attempts to extract edges from a SEM model object, where edges are defined as regression paths and covariances between variables (nodes).
get_edges(x, label = "est_sig", ...)
get_edges(x, label = "est_sig", ...)
x |
A model object of class |
label |
Either a character, indicating which column to use for edge
labels, or an expression. See Details.
Defaults to |
... |
Additional parameters passed to |
The function get_edges
identifies all regression paths,
latent variable definitions, and covariances in the model as edges.
The output of table_results
for those
paths is used to label the edges.
One way to create custom edge labels is by passing an expression to
label
. When an expression is
passed to label
, it is evaluated in the context of a data.frame
containing the results
of a call to table_results
on the x
argument.
Another way to create custom labels is by requesting auxiliary variables
using the columns
argument (which is passed to
table_results
), and then using these columns to construct a new
label. See examples.
An object of class 'tidy_edges'
# Standard use library(lavaan) res <- sem("dist ~ speed", cars) get_edges(res) # Pass an expression to the 'label' argument for custom labels get_edges(res, label = paste(est_sig, confint)) # Pass the argument 'columns' to table_results through '...' to retain # auxiliary columns for further processing edg <- get_edges(res, columns = c("est_sig", "confint")) edg edg <- within(edg, {label <- paste(est_sig, confint)}) edg
# Standard use library(lavaan) res <- sem("dist ~ speed", cars) get_edges(res) # Pass an expression to the 'label' argument for custom labels get_edges(res, label = paste(est_sig, confint)) # Pass the argument 'columns' to table_results through '...' to retain # auxiliary columns for further processing edg <- get_edges(res, columns = c("est_sig", "confint")) edg edg <- within(edg, {label <- paste(est_sig, confint)}) edg
Get fit indices from objects for which a method exists.
get_fit(x, ...)
get_fit(x, ...)
x |
An object for which a method exists. |
... |
further arguments to be passed to or from other methods. |
A data.frame.
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" res <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1, data = df) table_fit(res) ## End(Not run)
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" res <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1, data = df) table_fit(res) ## End(Not run)
Generate a tidy_layout for a SEM graph.
## S3 method for class 'lavaan' get_layout(x, ..., layout_algorithm = "layout_as_tree") get_layout(x, ...) ## Default S3 method: get_layout(x, ..., rows = NULL)
## S3 method for class 'lavaan' get_layout(x, ..., layout_algorithm = "layout_as_tree") get_layout(x, ...) ## Default S3 method: get_layout(x, ..., rows = NULL)
x |
An object for which a method exists; currently, methods exist for
|
... |
Character arguments corresponding to layout elements. Use node names, empty strings (""), or NA values. |
layout_algorithm |
Optional argument for fit model objects. Character
string, indicating which |
rows |
Numeric, indicating the number of rows of the graph. |
There are three ways to generate a layout:
Specify the layout in the call to get_layout()
by providing
node names and the number of
rows to create a layout matrix. Empty strings (""
)
or NA
can be used for empty cells. See Example 1.
Call get_layout()
on a model object or tidy_results
object. It will use the function
layout_as_tree
, or any other layout function
from the igraph
package, to generate a rudimentary layout. See
Example 2.
Instead of using get_layout()
, just use a matrix
or
data.frame
with your layout. For example, specify the layout in a
spreadsheet program, and load it into R (see Example 3). Or, copy the
layout to the clipboard from your spreadsheet program, and load it from the
clipboard (see Example 4)
The layout algorithms imported from igraph
are:
c("layout_as_star",
"layout_as_tree", "layout_in_circle", "layout_nicely",
"layout_on_grid", "layout_randomly", "layout_with_dh", "layout_with_fr",
"layout_with_gem",
"layout_with_graphopt", "layout_with_kk", "layout_with_lgl",
"layout_with_mds")
. These can be used by specifying the optional argument
layout_algorithm = ""
.
Object of class 'tidy_layout'
# Example 1 get_layout("c", NA, "d", NA, "e", NA, rows = 2) # Example 2 library(lavaan) fit <- cfa(' visual =~ x1 + x2 + x3 ', data = HolzingerSwineford1939[1:50, ]) get_layout(fit) ## Not run: # Example 3 # Here, we first write the layout to .csv, but you could create it in a # spreadsheet program, and save the spreadsheet to .csv: write.csv(matrix(c("c", "", "d", "", "e", ""), nrow = 2, byrow = TRUE), file = file.path(tempdir(), "example3.csv"), row.names = FALSE) # Now, we load the .csv: read.csv(file.path(tempdir(), "example3.csv")) # Example 4 # For this example, make your layout in a spreadsheet program, select it, and # copy to clipboard. Reading from the clipboard works differently in Windows # and Mac. For this example, I used Microsoft Excel. # On Windows, run: read.table("clipboard", sep = "\t") # On Mac, run: read.table(pipe("pbpaste"), sep="\t") ## End(Not run)
# Example 1 get_layout("c", NA, "d", NA, "e", NA, rows = 2) # Example 2 library(lavaan) fit <- cfa(' visual =~ x1 + x2 + x3 ', data = HolzingerSwineford1939[1:50, ]) get_layout(fit) ## Not run: # Example 3 # Here, we first write the layout to .csv, but you could create it in a # spreadsheet program, and save the spreadsheet to .csv: write.csv(matrix(c("c", "", "d", "", "e", ""), nrow = 2, byrow = TRUE), file = file.path(tempdir(), "example3.csv"), row.names = FALSE) # Now, we load the .csv: read.csv(file.path(tempdir(), "example3.csv")) # Example 4 # For this example, make your layout in a spreadsheet program, select it, and # copy to clipboard. Reading from the clipboard works differently in Windows # and Mac. For this example, I used Microsoft Excel. # On Windows, run: read.table("clipboard", sep = "\t") # On Mac, run: read.table(pipe("pbpaste"), sep="\t") ## End(Not run)
Attempts to extract nodes from a SEM model object, where nodes are defined as observed or latent variables.
get_nodes(x, label = paste2(name, est_sig, sep = "\n"), ...)
get_nodes(x, label = paste2(name, est_sig, sep = "\n"), ...)
x |
A model object of class |
label |
Either a character, indicating which column to use for node
labels, or an expression. See Details.
Defaults to |
... |
Additional parameters passed to |
The function get_nodes
identifies all dependent and
independent variables in the model as nodes. If a mean structure / intercepts
are included in the model, the output of table_results
for those
means / intercepts is used to label the nodes.
One way to create custom node labels is by passing an expression to
label
, as in the default value of the argument. When an expression is
passed to label
, it is evaluated in the context of a data.frame
containing the results
of a call to table_results
on the x
argument, with an
additional column labeled name
, which contains the node names.
Another way to create custom labels is by requesting auxiliary variables
using the columns
argument (which is passed to
table_results
), and then using these columns to construct a new
label. See examples.
An object of class 'tidy_nodes'
# Standard use extracts node names and shape # (rect for observed, oval for latent) library(lavaan) res <- sem("dist ~ speed", cars) get_nodes(res) # To label nodes with mean values, include meanstructure in the model # Note that it is possible to pass the argument 'digits' to table_results # through '...' res <- sem("dist ~ speed", cars, meanstructure = TRUE) get_nodes(res, digits = 3) # Pass an expression to the 'label' argument for custom labels get_nodes(res, label = paste0(name, " ", est_sig, "\n", confint)) # Pass the argument 'columns' to table_results through '...' to retain # auxiliary columns for further processing nod <- get_nodes(res, columns = c("est_sig", "confint")) nod nod <- within(nod, {label <- paste0(name, " ", est_sig, "\n", confint)}) nod
# Standard use extracts node names and shape # (rect for observed, oval for latent) library(lavaan) res <- sem("dist ~ speed", cars) get_nodes(res) # To label nodes with mean values, include meanstructure in the model # Note that it is possible to pass the argument 'digits' to table_results # through '...' res <- sem("dist ~ speed", cars, meanstructure = TRUE) get_nodes(res, digits = 3) # Pass an expression to the 'label' argument for custom labels get_nodes(res, label = paste0(name, " ", est_sig, "\n", confint)) # Pass the argument 'columns' to table_results through '...' to retain # auxiliary columns for further processing nod <- get_nodes(res, columns = c("est_sig", "confint")) nod nod <- within(nod, {label <- paste0(name, " ", est_sig, "\n", confint)}) nod
Render a graph based on a layout, and either nodes and edges, or a model object.
## S3 method for class 'dagitty' graph_sem(model, ...) graph_sem(...) ## Default S3 method: graph_sem( edges = NULL, layout = NULL, nodes = NULL, rect_width = 1.2, rect_height = 0.8, ellipses_width = 1, ellipses_height = 1, variance_diameter = 0.8, spacing_x = 2, spacing_y = 2, text_size = 4, curvature = 60, angle = NULL, fix_coord = FALSE, ... ) ## S3 method for class 'lavaan' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'MxModel' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'mplus.model' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'character' graph_sem(...) ## S3 method for class 'mplusObject' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...)
## S3 method for class 'dagitty' graph_sem(model, ...) graph_sem(...) ## Default S3 method: graph_sem( edges = NULL, layout = NULL, nodes = NULL, rect_width = 1.2, rect_height = 0.8, ellipses_width = 1, ellipses_height = 1, variance_diameter = 0.8, spacing_x = 2, spacing_y = 2, text_size = 4, curvature = 60, angle = NULL, fix_coord = FALSE, ... ) ## S3 method for class 'lavaan' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'MxModel' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'mplus.model' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'character' graph_sem(...) ## S3 method for class 'mplusObject' graph_sem(model, edges = NULL, layout = NULL, nodes = NULL, ...)
model |
Instead of the edges argument, it is also possible to use the
model argument and pass an object for which a method exists (e.g.,
|
... |
Additional arguments passed to and from functions. |
edges |
Object of class 'tidy_edges', or a |
layout |
A matrix (or data.frame) that describes the layout; see
|
nodes |
Optional, object of class 'tidy_nodes', created with the
|
rect_width |
Width of rectangles (used to display observed variables), Default: 1.2 |
rect_height |
Height of rectangles (used to display observed variables), Default: 0.8 |
ellipses_width |
Width of ellipses (used to display latent variables), Default: 1 |
ellipses_height |
Height of ellipses (used to display latent variables), Default: 1 |
variance_diameter |
Diameter of variance circles, Default: .8 |
spacing_x |
Spacing between columns of the graph, Default: 1 |
spacing_y |
Spacing between rows of the graph, Default: 1 |
text_size |
Point size of text, Default: 4 |
curvature |
Curvature of curved edges. The curve is a circle segment
originating in a point that forms a triangle with the two connected points,
with angles at the two connected points equal to |
angle |
Angle used to connect nodes by the top and bottom. Defaults to NULL, which means Euclidean distance is used to determine the shortest distance between node sides. A numeric value between 0-180 can be provided, where 0 means that only nodes with the same x-coordinates are connected top-to-bottom, and 180 means that all nodes are connected top-to-bottom. |
fix_coord |
Whether or not to fix the aspect ratio of the graph. Does not work with multi-group or multilevel models. Default: FALSE. |
The default interface simply Runs the functions
prepare_graph
and
plot
. The alternative interface first runs
get_nodes
and get_edges
on
the model
argument.
Object of class 'sem_graph'
library(lavaan) res <- sem("dist ~ speed", cars) graph_sem(res)
library(lavaan) res <- sem("dist ~ speed", cars) graph_sem(res)
IC weights quantify the evidence in favor of different models in a set. This function normalizes the IC values to obtain IC weights, which sum to 1. The model with the highest weight is most supported by the data. The ratio of different weights gives the relative support in favor of one model over another.
ic_weights(x, ...)
ic_weights(x, ...)
x |
An object for which a method exists. |
... |
Additional arguments. |
A list
of class ic_weights
with elements $weights
, which
contains the model weights, and $comparison
, which contains the relative
support in favor of each model over the others.
Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic bulletin & review, 11(1), 192-196. doi:10.3758/BF03206482
ics <- c(100, 200, 102, 300) ic_weights(ics)
ics <- c(100, 200, 102, 300) ic_weights(ics)
This function allows users to conditionally manipulate the edges
and nodes of a sem_graph
object. The generic function if_edit
applies the expression expr
to all rows of the nodes
and
edges
data.frames for which condition
is TRUE
.
The wrapper functions documented in the Usage section have a hard-coded
expr
and condition
; for example,
color_sig(color = "green")
colors all nodes and edges with
pval < .05
green. If no column exists for the assigned aesthetic
(e.g., color
), the wrappers assign the default argument
(in this case, color = "black"
) to all other nodes and edges.
if_edit(data, condition, expr, ...) if_edges(data, condition, expr, ...) if_nodes(data, condition, expr, ...) ## S3 method for class 'sem_graph' if_edit(data, condition, expr, element = c("edges", "nodes"), ...) all_sig(data, expr, ...) hide_sig(data, ...) show_sig(data, ...) colour_sig(data, colour = "black", ...) color_sig(data, color = "black", ...) linetype_sig(data, linetype = 1, ...) size_sig(data, size = 1, ...) alpha_sig(data, alpha = 1, ...) fill_sig(data, fill = "white", ...) label_colour_sig(data, label_colour = "black", ...) label_color_sig(data, label_color = "black", ...) label_fill_sig(data, label_fill = "white", ...) label_size_sig(data, label_size = 4, ...) label_alpha_sig(data, label_alpha = 1, ...) label_family_sig(data, label_family = "sans", ...) label_fontface_sig(data, label_fontface = "plain", ...) label_hjust_sig(data, label_hjust = "center", ...) label_vjust_sig(data, label_vjust = "middle", ...) label_lineheight_sig(data, label_lineheight = 1, ...) label_location_sig(data, label_location = 0.5, ...) all_nonsig(data, expr, ...) hide_nonsig(data, ...) show_nonsig(data, ...) colour_nonsig(data, colour = "black", ...) color_nonsig(data, color = "black", ...) linetype_nonsig(data, linetype = 1, ...) size_nonsig(data, size = 1, ...) alpha_nonsig(data, alpha = 1, ...) fill_nonsig(data, fill = "white", ...) label_colour_nonsig(data, label_colour = "black", ...) label_color_nonsig(data, label_color = "black", ...) label_fill_nonsig(data, label_fill = "white", ...) label_size_nonsig(data, label_size = 4, ...) label_alpha_nonsig(data, label_alpha = 1, ...) label_family_nonsig(data, label_family = "sans", ...) label_fontface_nonsig(data, label_fontface = "plain", ...) label_hjust_nonsig(data, label_hjust = "center", ...) label_vjust_nonsig(data, label_vjust = "middle", ...) label_lineheight_nonsig(data, label_lineheight = 1, ...) label_location_nonsig(data, label_location = 0.5, ...) all_fixed(data, expr, ...) hide_fixed(data, ...) show_fixed(data, ...) colour_fixed(data, colour = "black", ...) color_fixed(data, color = "black", ...) linetype_fixed(data, linetype = 1, ...) size_fixed(data, size = 1, ...) alpha_fixed(data, alpha = 1, ...) fill_fixed(data, fill = "white", ...) label_colour_fixed(data, label_colour = "black", ...) label_color_fixed(data, label_color = "black", ...) label_fill_fixed(data, label_fill = "white", ...) label_size_fixed(data, label_size = 4, ...) label_alpha_fixed(data, label_alpha = 1, ...) label_family_fixed(data, label_family = "sans", ...) label_fontface_fixed(data, label_fontface = "plain", ...) label_hjust_fixed(data, label_hjust = "center", ...) label_vjust_fixed(data, label_vjust = "middle", ...) label_lineheight_fixed(data, label_lineheight = 1, ...) label_location_fixed(data, label_location = 0.5, ...) all_pos(data, expr, ...) hide_pos(data, ...) show_pos(data, ...) colour_pos(data, colour = "black", ...) color_pos(data, color = "black", ...) linetype_pos(data, linetype = 1, ...) size_pos(data, size = 1, ...) alpha_pos(data, alpha = 1, ...) fill_pos(data, fill = "white", ...) label_colour_pos(data, label_colour = "black", ...) label_color_pos(data, label_color = "black", ...) label_fill_pos(data, label_fill = "white", ...) label_size_pos(data, label_size = 4, ...) label_alpha_pos(data, label_alpha = 1, ...) label_family_pos(data, label_family = "sans", ...) label_fontface_pos(data, label_fontface = "plain", ...) label_hjust_pos(data, label_hjust = "center", ...) label_vjust_pos(data, label_vjust = "middle", ...) label_lineheight_pos(data, label_lineheight = 1, ...) label_location_pos(data, label_location = 0.5, ...) all_neg(data, expr, ...) hide_neg(data, ...) show_neg(data, ...) colour_neg(data, colour = "black", ...) color_neg(data, color = "black", ...) linetype_neg(data, linetype = 1, ...) size_neg(data, size = 1, ...) alpha_neg(data, alpha = 1, ...) fill_neg(data, fill = "white", ...) label_colour_neg(data, label_colour = "black", ...) label_color_neg(data, label_color = "black", ...) label_fill_neg(data, label_fill = "white", ...) label_size_neg(data, label_size = 4, ...) label_alpha_neg(data, label_alpha = 1, ...) label_family_neg(data, label_family = "sans", ...) label_fontface_neg(data, label_fontface = "plain", ...) label_hjust_neg(data, label_hjust = "center", ...) label_vjust_neg(data, label_vjust = "middle", ...) label_lineheight_neg(data, label_lineheight = 1, ...) label_location_neg(data, label_location = 0.5, ...) all_var(data, expr, ...) hide_var(data, ...) show_var(data, ...) colour_var(data, colour = "black", ...) color_var(data, color = "black", ...) linetype_var(data, linetype = 1, ...) size_var(data, size = 1, ...) alpha_var(data, alpha = 1, ...) label_colour_var(data, label_colour = "black", ...) label_color_var(data, label_color = "black", ...) label_fill_var(data, label_fill = "white", ...) label_size_var(data, label_size = 4, ...) label_alpha_var(data, label_alpha = 1, ...) label_family_var(data, label_family = "sans", ...) label_fontface_var(data, label_fontface = "plain", ...) label_hjust_var(data, label_hjust = "center", ...) label_vjust_var(data, label_vjust = "middle", ...) label_lineheight_var(data, label_lineheight = 1, ...) all_cov(data, expr, ...) hide_cov(data, ...) show_cov(data, ...) colour_cov(data, colour = "black", ...) color_cov(data, color = "black", ...) linetype_cov(data, linetype = 1, ...) size_cov(data, size = 1, ...) alpha_cov(data, alpha = 1, ...) label_colour_cov(data, label_colour = "black", ...) label_color_cov(data, label_color = "black", ...) label_fill_cov(data, label_fill = "white", ...) label_size_cov(data, label_size = 4, ...) label_alpha_cov(data, label_alpha = 1, ...) label_family_cov(data, label_family = "sans", ...) label_fontface_cov(data, label_fontface = "plain", ...) label_hjust_cov(data, label_hjust = "center", ...) label_vjust_cov(data, label_vjust = "middle", ...) label_lineheight_cov(data, label_lineheight = 1, ...) label_location_cov(data, label_location = 0.5, ...) all_reg(data, expr, ...) hide_reg(data, ...) show_reg(data, ...) colour_reg(data, colour = "black", ...) color_reg(data, color = "black", ...) linetype_reg(data, linetype = 1, ...) size_reg(data, size = 1, ...) alpha_reg(data, alpha = 1, ...) label_colour_reg(data, label_colour = "black", ...) label_color_reg(data, label_color = "black", ...) label_fill_reg(data, label_fill = "white", ...) label_size_reg(data, label_size = 4, ...) label_alpha_reg(data, label_alpha = 1, ...) label_family_reg(data, label_family = "sans", ...) label_fontface_reg(data, label_fontface = "plain", ...) label_hjust_reg(data, label_hjust = "center", ...) label_vjust_reg(data, label_vjust = "middle", ...) label_lineheight_reg(data, label_lineheight = 1, ...) label_location_reg(data, label_location = 0.5, ...) all_load(data, expr, ...) hide_load(data, ...) show_load(data, ...) colour_load(data, colour = "black", ...) color_load(data, color = "black", ...) linetype_load(data, linetype = 1, ...) size_load(data, size = 1, ...) alpha_load(data, alpha = 1, ...) label_colour_load(data, label_colour = "black", ...) label_color_load(data, label_color = "black", ...) label_fill_load(data, label_fill = "white", ...) label_size_load(data, label_size = 4, ...) label_alpha_load(data, label_alpha = 1, ...) label_family_load(data, label_family = "sans", ...) label_fontface_load(data, label_fontface = "plain", ...) label_hjust_load(data, label_hjust = "center", ...) label_vjust_load(data, label_vjust = "middle", ...) label_lineheight_load(data, label_lineheight = 1, ...) label_location_load(data, label_location = 0.5, ...) all_obs(data, expr, ...) hide_obs(data, ...) show_obs(data, ...) colour_obs(data, colour = "black", ...) color_obs(data, color = "black", ...) linetype_obs(data, linetype = 1, ...) size_obs(data, size = 1, ...) alpha_obs(data, alpha = 1, ...) fill_obs(data, fill = "white", ...) label_colour_obs(data, label_colour = "black", ...) label_color_obs(data, label_color = "black", ...) label_fill_obs(data, label_fill = "white", ...) label_size_obs(data, label_size = 4, ...) label_alpha_obs(data, label_alpha = 1, ...) label_family_obs(data, label_family = "sans", ...) label_fontface_obs(data, label_fontface = "plain", ...) label_hjust_obs(data, label_hjust = "center", ...) label_vjust_obs(data, label_vjust = "middle", ...) label_lineheight_obs(data, label_lineheight = 1, ...) all_latent(data, expr, ...) hide_latent(data, ...) show_latent(data, ...) colour_latent(data, colour = "black", ...) color_latent(data, color = "black", ...) linetype_latent(data, linetype = 1, ...) size_latent(data, size = 1, ...) alpha_latent(data, alpha = 1, ...) fill_latent(data, fill = "white", ...) label_colour_latent(data, label_colour = "black", ...) label_color_latent(data, label_color = "black", ...) label_fill_latent(data, label_fill = "white", ...) label_size_latent(data, label_size = 4, ...) label_alpha_latent(data, label_alpha = 1, ...) label_family_latent(data, label_family = "sans", ...) label_fontface_latent(data, label_fontface = "plain", ...) label_hjust_latent(data, label_hjust = "center", ...) label_vjust_latent(data, label_vjust = "middle", ...) label_lineheight_latent(data, label_lineheight = 1, ...) all_sig_nodes(data, expr, ...) hide_sig_nodes(data, ...) show_sig_nodes(data, ...) colour_sig_nodes(data, colour = "black", ...) color_sig_nodes(data, color = "black", ...) linetype_sig_nodes(data, linetype = 1, ...) size_sig_nodes(data, size = 1, ...) alpha_sig_nodes(data, alpha = 1, ...) label_colour_sig_nodes(data, label_colour = "black", ...) label_color_sig_nodes(data, label_color = "black", ...) label_fill_sig_nodes(data, label_fill = "white", ...) label_size_sig_nodes(data, label_size = 4, ...) label_alpha_sig_nodes(data, label_alpha = 1, ...) label_family_sig_nodes(data, label_family = "sans", ...) label_fontface_sig_nodes(data, label_fontface = "plain", ...) label_hjust_sig_nodes(data, label_hjust = "center", ...) label_vjust_sig_nodes(data, label_vjust = "middle", ...) label_lineheight_sig_nodes(data, label_lineheight = 1, ...) all_nonsig_nodes(data, expr, ...) hide_nonsig_nodes(data, ...) show_nonsig_nodes(data, ...) colour_nonsig_nodes(data, colour = "black", ...) color_nonsig_nodes(data, color = "black", ...) linetype_nonsig_nodes(data, linetype = 1, ...) size_nonsig_nodes(data, size = 1, ...) alpha_nonsig_nodes(data, alpha = 1, ...) label_colour_nonsig_nodes(data, label_colour = "black", ...) label_color_nonsig_nodes(data, label_color = "black", ...) label_fill_nonsig_nodes(data, label_fill = "white", ...) label_size_nonsig_nodes(data, label_size = 4, ...) label_alpha_nonsig_nodes(data, label_alpha = 1, ...) label_family_nonsig_nodes(data, label_family = "sans", ...) label_fontface_nonsig_nodes(data, label_fontface = "plain", ...) label_hjust_nonsig_nodes(data, label_hjust = "center", ...) label_vjust_nonsig_nodes(data, label_vjust = "middle", ...) label_lineheight_nonsig_nodes(data, label_lineheight = 1, ...) all_fixed_nodes(data, expr, ...) hide_fixed_nodes(data, ...) show_fixed_nodes(data, ...) colour_fixed_nodes(data, colour = "black", ...) color_fixed_nodes(data, color = "black", ...) linetype_fixed_nodes(data, linetype = 1, ...) size_fixed_nodes(data, size = 1, ...) alpha_fixed_nodes(data, alpha = 1, ...) label_colour_fixed_nodes(data, label_colour = "black", ...) label_color_fixed_nodes(data, label_color = "black", ...) label_fill_fixed_nodes(data, label_fill = "white", ...) label_size_fixed_nodes(data, label_size = 4, ...) label_alpha_fixed_nodes(data, label_alpha = 1, ...) label_family_fixed_nodes(data, label_family = "sans", ...) label_fontface_fixed_nodes(data, label_fontface = "plain", ...) label_hjust_fixed_nodes(data, label_hjust = "center", ...) label_vjust_fixed_nodes(data, label_vjust = "middle", ...) label_lineheight_fixed_nodes(data, label_lineheight = 1, ...) all_pos_nodes(data, expr, ...) hide_pos_nodes(data, ...) show_pos_nodes(data, ...) colour_pos_nodes(data, colour = "black", ...) color_pos_nodes(data, color = "black", ...) linetype_pos_nodes(data, linetype = 1, ...) size_pos_nodes(data, size = 1, ...) alpha_pos_nodes(data, alpha = 1, ...) label_colour_pos_nodes(data, label_colour = "black", ...) label_color_pos_nodes(data, label_color = "black", ...) label_fill_pos_nodes(data, label_fill = "white", ...) label_size_pos_nodes(data, label_size = 4, ...) label_alpha_pos_nodes(data, label_alpha = 1, ...) label_family_pos_nodes(data, label_family = "sans", ...) label_fontface_pos_nodes(data, label_fontface = "plain", ...) label_hjust_pos_nodes(data, label_hjust = "center", ...) label_vjust_pos_nodes(data, label_vjust = "middle", ...) label_lineheight_pos_nodes(data, label_lineheight = 1, ...) all_neg_nodes(data, expr, ...) hide_neg_nodes(data, ...) show_neg_nodes(data, ...) colour_neg_nodes(data, colour = "black", ...) color_neg_nodes(data, color = "black", ...) linetype_neg_nodes(data, linetype = 1, ...) size_neg_nodes(data, size = 1, ...) alpha_neg_nodes(data, alpha = 1, ...) label_colour_neg_nodes(data, label_colour = "black", ...) label_color_neg_nodes(data, label_color = "black", ...) label_fill_neg_nodes(data, label_fill = "white", ...) label_size_neg_nodes(data, label_size = 4, ...) label_alpha_neg_nodes(data, label_alpha = 1, ...) label_family_neg_nodes(data, label_family = "sans", ...) label_fontface_neg_nodes(data, label_fontface = "plain", ...) label_hjust_neg_nodes(data, label_hjust = "center", ...) label_vjust_neg_nodes(data, label_vjust = "middle", ...) label_lineheight_neg_nodes(data, label_lineheight = 1, ...) all_sig_edges(data, expr, ...) hide_sig_edges(data, ...) show_sig_edges(data, ...) colour_sig_edges(data, colour = "black", ...) color_sig_edges(data, color = "black", ...) linetype_sig_edges(data, linetype = 1, ...) size_sig_edges(data, size = 1, ...) alpha_sig_edges(data, alpha = 1, ...) label_colour_sig_edges(data, label_colour = "black", ...) label_color_sig_edges(data, label_color = "black", ...) label_fill_sig_edges(data, label_fill = "white", ...) label_size_sig_edges(data, label_size = 4, ...) label_alpha_sig_edges(data, label_alpha = 1, ...) label_family_sig_edges(data, label_family = "sans", ...) label_fontface_sig_edges(data, label_fontface = "plain", ...) label_hjust_sig_edges(data, label_hjust = "center", ...) label_vjust_sig_edges(data, label_vjust = "middle", ...) label_lineheight_sig_edges(data, label_lineheight = 1, ...) all_nonsig_edges(data, expr, ...) hide_nonsig_edges(data, ...) show_nonsig_edges(data, ...) colour_nonsig_edges(data, colour = "black", ...) color_nonsig_edges(data, color = "black", ...) linetype_nonsig_edges(data, linetype = 1, ...) size_nonsig_edges(data, size = 1, ...) alpha_nonsig_edges(data, alpha = 1, ...) label_colour_nonsig_edges(data, label_colour = "black", ...) label_color_nonsig_edges(data, label_color = "black", ...) label_fill_nonsig_edges(data, label_fill = "white", ...) label_size_nonsig_edges(data, label_size = 4, ...) label_alpha_nonsig_edges(data, label_alpha = 1, ...) label_family_nonsig_edges(data, label_family = "sans", ...) label_fontface_nonsig_edges(data, label_fontface = "plain", ...) label_hjust_nonsig_edges(data, label_hjust = "center", ...) label_vjust_nonsig_edges(data, label_vjust = "middle", ...) label_lineheight_nonsig_edges(data, label_lineheight = 1, ...) all_fixed_edges(data, expr, ...) hide_fixed_edges(data, ...) show_fixed_edges(data, ...) colour_fixed_edges(data, colour = "black", ...) color_fixed_edges(data, color = "black", ...) linetype_fixed_edges(data, linetype = 1, ...) size_fixed_edges(data, size = 1, ...) alpha_fixed_edges(data, alpha = 1, ...) label_colour_fixed_edges(data, label_colour = "black", ...) label_color_fixed_edges(data, label_color = "black", ...) label_fill_fixed_edges(data, label_fill = "white", ...) label_size_fixed_edges(data, label_size = 4, ...) label_alpha_fixed_edges(data, label_alpha = 1, ...) label_family_fixed_edges(data, label_family = "sans", ...) label_fontface_fixed_edges(data, label_fontface = "plain", ...) label_hjust_fixed_edges(data, label_hjust = "center", ...) label_vjust_fixed_edges(data, label_vjust = "middle", ...) label_lineheight_fixed_edges(data, label_lineheight = 1, ...) all_pos_edges(data, expr, ...) hide_pos_edges(data, ...) show_pos_edges(data, ...) colour_pos_edges(data, colour = "black", ...) color_pos_edges(data, color = "black", ...) linetype_pos_edges(data, linetype = 1, ...) size_pos_edges(data, size = 1, ...) alpha_pos_edges(data, alpha = 1, ...) label_colour_pos_edges(data, label_colour = "black", ...) label_color_pos_edges(data, label_color = "black", ...) label_fill_pos_edges(data, label_fill = "white", ...) label_size_pos_edges(data, label_size = 4, ...) label_alpha_pos_edges(data, label_alpha = 1, ...) label_family_pos_edges(data, label_family = "sans", ...) label_fontface_pos_edges(data, label_fontface = "plain", ...) label_hjust_pos_edges(data, label_hjust = "center", ...) label_vjust_pos_edges(data, label_vjust = "middle", ...) label_lineheight_pos_edges(data, label_lineheight = 1, ...) all_neg_edges(data, expr, ...) hide_neg_edges(data, ...) show_neg_edges(data, ...) colour_neg_edges(data, colour = "black", ...) color_neg_edges(data, color = "black", ...) linetype_neg_edges(data, linetype = 1, ...) size_neg_edges(data, size = 1, ...) alpha_neg_edges(data, alpha = 1, ...) label_colour_neg_edges(data, label_colour = "black", ...) label_color_neg_edges(data, label_color = "black", ...) label_fill_neg_edges(data, label_fill = "white", ...) label_size_neg_edges(data, label_size = 4, ...) label_alpha_neg_edges(data, label_alpha = 1, ...) label_family_neg_edges(data, label_family = "sans", ...) label_fontface_neg_edges(data, label_fontface = "plain", ...) label_hjust_neg_edges(data, label_hjust = "center", ...) label_vjust_neg_edges(data, label_vjust = "middle", ...) label_lineheight_neg_edges(data, label_lineheight = 1, ...)
if_edit(data, condition, expr, ...) if_edges(data, condition, expr, ...) if_nodes(data, condition, expr, ...) ## S3 method for class 'sem_graph' if_edit(data, condition, expr, element = c("edges", "nodes"), ...) all_sig(data, expr, ...) hide_sig(data, ...) show_sig(data, ...) colour_sig(data, colour = "black", ...) color_sig(data, color = "black", ...) linetype_sig(data, linetype = 1, ...) size_sig(data, size = 1, ...) alpha_sig(data, alpha = 1, ...) fill_sig(data, fill = "white", ...) label_colour_sig(data, label_colour = "black", ...) label_color_sig(data, label_color = "black", ...) label_fill_sig(data, label_fill = "white", ...) label_size_sig(data, label_size = 4, ...) label_alpha_sig(data, label_alpha = 1, ...) label_family_sig(data, label_family = "sans", ...) label_fontface_sig(data, label_fontface = "plain", ...) label_hjust_sig(data, label_hjust = "center", ...) label_vjust_sig(data, label_vjust = "middle", ...) label_lineheight_sig(data, label_lineheight = 1, ...) label_location_sig(data, label_location = 0.5, ...) all_nonsig(data, expr, ...) hide_nonsig(data, ...) show_nonsig(data, ...) colour_nonsig(data, colour = "black", ...) color_nonsig(data, color = "black", ...) linetype_nonsig(data, linetype = 1, ...) size_nonsig(data, size = 1, ...) alpha_nonsig(data, alpha = 1, ...) fill_nonsig(data, fill = "white", ...) label_colour_nonsig(data, label_colour = "black", ...) label_color_nonsig(data, label_color = "black", ...) label_fill_nonsig(data, label_fill = "white", ...) label_size_nonsig(data, label_size = 4, ...) label_alpha_nonsig(data, label_alpha = 1, ...) label_family_nonsig(data, label_family = "sans", ...) label_fontface_nonsig(data, label_fontface = "plain", ...) label_hjust_nonsig(data, label_hjust = "center", ...) label_vjust_nonsig(data, label_vjust = "middle", ...) label_lineheight_nonsig(data, label_lineheight = 1, ...) label_location_nonsig(data, label_location = 0.5, ...) all_fixed(data, expr, ...) hide_fixed(data, ...) show_fixed(data, ...) colour_fixed(data, colour = "black", ...) color_fixed(data, color = "black", ...) linetype_fixed(data, linetype = 1, ...) size_fixed(data, size = 1, ...) alpha_fixed(data, alpha = 1, ...) fill_fixed(data, fill = "white", ...) label_colour_fixed(data, label_colour = "black", ...) label_color_fixed(data, label_color = "black", ...) label_fill_fixed(data, label_fill = "white", ...) label_size_fixed(data, label_size = 4, ...) label_alpha_fixed(data, label_alpha = 1, ...) label_family_fixed(data, label_family = "sans", ...) label_fontface_fixed(data, label_fontface = "plain", ...) label_hjust_fixed(data, label_hjust = "center", ...) label_vjust_fixed(data, label_vjust = "middle", ...) label_lineheight_fixed(data, label_lineheight = 1, ...) label_location_fixed(data, label_location = 0.5, ...) all_pos(data, expr, ...) hide_pos(data, ...) show_pos(data, ...) colour_pos(data, colour = "black", ...) color_pos(data, color = "black", ...) linetype_pos(data, linetype = 1, ...) size_pos(data, size = 1, ...) alpha_pos(data, alpha = 1, ...) fill_pos(data, fill = "white", ...) label_colour_pos(data, label_colour = "black", ...) label_color_pos(data, label_color = "black", ...) label_fill_pos(data, label_fill = "white", ...) label_size_pos(data, label_size = 4, ...) label_alpha_pos(data, label_alpha = 1, ...) label_family_pos(data, label_family = "sans", ...) label_fontface_pos(data, label_fontface = "plain", ...) label_hjust_pos(data, label_hjust = "center", ...) label_vjust_pos(data, label_vjust = "middle", ...) label_lineheight_pos(data, label_lineheight = 1, ...) label_location_pos(data, label_location = 0.5, ...) all_neg(data, expr, ...) hide_neg(data, ...) show_neg(data, ...) colour_neg(data, colour = "black", ...) color_neg(data, color = "black", ...) linetype_neg(data, linetype = 1, ...) size_neg(data, size = 1, ...) alpha_neg(data, alpha = 1, ...) fill_neg(data, fill = "white", ...) label_colour_neg(data, label_colour = "black", ...) label_color_neg(data, label_color = "black", ...) label_fill_neg(data, label_fill = "white", ...) label_size_neg(data, label_size = 4, ...) label_alpha_neg(data, label_alpha = 1, ...) label_family_neg(data, label_family = "sans", ...) label_fontface_neg(data, label_fontface = "plain", ...) label_hjust_neg(data, label_hjust = "center", ...) label_vjust_neg(data, label_vjust = "middle", ...) label_lineheight_neg(data, label_lineheight = 1, ...) label_location_neg(data, label_location = 0.5, ...) all_var(data, expr, ...) hide_var(data, ...) show_var(data, ...) colour_var(data, colour = "black", ...) color_var(data, color = "black", ...) linetype_var(data, linetype = 1, ...) size_var(data, size = 1, ...) alpha_var(data, alpha = 1, ...) label_colour_var(data, label_colour = "black", ...) label_color_var(data, label_color = "black", ...) label_fill_var(data, label_fill = "white", ...) label_size_var(data, label_size = 4, ...) label_alpha_var(data, label_alpha = 1, ...) label_family_var(data, label_family = "sans", ...) label_fontface_var(data, label_fontface = "plain", ...) label_hjust_var(data, label_hjust = "center", ...) label_vjust_var(data, label_vjust = "middle", ...) label_lineheight_var(data, label_lineheight = 1, ...) all_cov(data, expr, ...) hide_cov(data, ...) show_cov(data, ...) colour_cov(data, colour = "black", ...) color_cov(data, color = "black", ...) linetype_cov(data, linetype = 1, ...) size_cov(data, size = 1, ...) alpha_cov(data, alpha = 1, ...) label_colour_cov(data, label_colour = "black", ...) label_color_cov(data, label_color = "black", ...) label_fill_cov(data, label_fill = "white", ...) label_size_cov(data, label_size = 4, ...) label_alpha_cov(data, label_alpha = 1, ...) label_family_cov(data, label_family = "sans", ...) label_fontface_cov(data, label_fontface = "plain", ...) label_hjust_cov(data, label_hjust = "center", ...) label_vjust_cov(data, label_vjust = "middle", ...) label_lineheight_cov(data, label_lineheight = 1, ...) label_location_cov(data, label_location = 0.5, ...) all_reg(data, expr, ...) hide_reg(data, ...) show_reg(data, ...) colour_reg(data, colour = "black", ...) color_reg(data, color = "black", ...) linetype_reg(data, linetype = 1, ...) size_reg(data, size = 1, ...) alpha_reg(data, alpha = 1, ...) label_colour_reg(data, label_colour = "black", ...) label_color_reg(data, label_color = "black", ...) label_fill_reg(data, label_fill = "white", ...) label_size_reg(data, label_size = 4, ...) label_alpha_reg(data, label_alpha = 1, ...) label_family_reg(data, label_family = "sans", ...) label_fontface_reg(data, label_fontface = "plain", ...) label_hjust_reg(data, label_hjust = "center", ...) label_vjust_reg(data, label_vjust = "middle", ...) label_lineheight_reg(data, label_lineheight = 1, ...) label_location_reg(data, label_location = 0.5, ...) all_load(data, expr, ...) hide_load(data, ...) show_load(data, ...) colour_load(data, colour = "black", ...) color_load(data, color = "black", ...) linetype_load(data, linetype = 1, ...) size_load(data, size = 1, ...) alpha_load(data, alpha = 1, ...) label_colour_load(data, label_colour = "black", ...) label_color_load(data, label_color = "black", ...) label_fill_load(data, label_fill = "white", ...) label_size_load(data, label_size = 4, ...) label_alpha_load(data, label_alpha = 1, ...) label_family_load(data, label_family = "sans", ...) label_fontface_load(data, label_fontface = "plain", ...) label_hjust_load(data, label_hjust = "center", ...) label_vjust_load(data, label_vjust = "middle", ...) label_lineheight_load(data, label_lineheight = 1, ...) label_location_load(data, label_location = 0.5, ...) all_obs(data, expr, ...) hide_obs(data, ...) show_obs(data, ...) colour_obs(data, colour = "black", ...) color_obs(data, color = "black", ...) linetype_obs(data, linetype = 1, ...) size_obs(data, size = 1, ...) alpha_obs(data, alpha = 1, ...) fill_obs(data, fill = "white", ...) label_colour_obs(data, label_colour = "black", ...) label_color_obs(data, label_color = "black", ...) label_fill_obs(data, label_fill = "white", ...) label_size_obs(data, label_size = 4, ...) label_alpha_obs(data, label_alpha = 1, ...) label_family_obs(data, label_family = "sans", ...) label_fontface_obs(data, label_fontface = "plain", ...) label_hjust_obs(data, label_hjust = "center", ...) label_vjust_obs(data, label_vjust = "middle", ...) label_lineheight_obs(data, label_lineheight = 1, ...) all_latent(data, expr, ...) hide_latent(data, ...) show_latent(data, ...) colour_latent(data, colour = "black", ...) color_latent(data, color = "black", ...) linetype_latent(data, linetype = 1, ...) size_latent(data, size = 1, ...) alpha_latent(data, alpha = 1, ...) fill_latent(data, fill = "white", ...) label_colour_latent(data, label_colour = "black", ...) label_color_latent(data, label_color = "black", ...) label_fill_latent(data, label_fill = "white", ...) label_size_latent(data, label_size = 4, ...) label_alpha_latent(data, label_alpha = 1, ...) label_family_latent(data, label_family = "sans", ...) label_fontface_latent(data, label_fontface = "plain", ...) label_hjust_latent(data, label_hjust = "center", ...) label_vjust_latent(data, label_vjust = "middle", ...) label_lineheight_latent(data, label_lineheight = 1, ...) all_sig_nodes(data, expr, ...) hide_sig_nodes(data, ...) show_sig_nodes(data, ...) colour_sig_nodes(data, colour = "black", ...) color_sig_nodes(data, color = "black", ...) linetype_sig_nodes(data, linetype = 1, ...) size_sig_nodes(data, size = 1, ...) alpha_sig_nodes(data, alpha = 1, ...) label_colour_sig_nodes(data, label_colour = "black", ...) label_color_sig_nodes(data, label_color = "black", ...) label_fill_sig_nodes(data, label_fill = "white", ...) label_size_sig_nodes(data, label_size = 4, ...) label_alpha_sig_nodes(data, label_alpha = 1, ...) label_family_sig_nodes(data, label_family = "sans", ...) label_fontface_sig_nodes(data, label_fontface = "plain", ...) label_hjust_sig_nodes(data, label_hjust = "center", ...) label_vjust_sig_nodes(data, label_vjust = "middle", ...) label_lineheight_sig_nodes(data, label_lineheight = 1, ...) all_nonsig_nodes(data, expr, ...) hide_nonsig_nodes(data, ...) show_nonsig_nodes(data, ...) colour_nonsig_nodes(data, colour = "black", ...) color_nonsig_nodes(data, color = "black", ...) linetype_nonsig_nodes(data, linetype = 1, ...) size_nonsig_nodes(data, size = 1, ...) alpha_nonsig_nodes(data, alpha = 1, ...) label_colour_nonsig_nodes(data, label_colour = "black", ...) label_color_nonsig_nodes(data, label_color = "black", ...) label_fill_nonsig_nodes(data, label_fill = "white", ...) label_size_nonsig_nodes(data, label_size = 4, ...) label_alpha_nonsig_nodes(data, label_alpha = 1, ...) label_family_nonsig_nodes(data, label_family = "sans", ...) label_fontface_nonsig_nodes(data, label_fontface = "plain", ...) label_hjust_nonsig_nodes(data, label_hjust = "center", ...) label_vjust_nonsig_nodes(data, label_vjust = "middle", ...) label_lineheight_nonsig_nodes(data, label_lineheight = 1, ...) all_fixed_nodes(data, expr, ...) hide_fixed_nodes(data, ...) show_fixed_nodes(data, ...) colour_fixed_nodes(data, colour = "black", ...) color_fixed_nodes(data, color = "black", ...) linetype_fixed_nodes(data, linetype = 1, ...) size_fixed_nodes(data, size = 1, ...) alpha_fixed_nodes(data, alpha = 1, ...) label_colour_fixed_nodes(data, label_colour = "black", ...) label_color_fixed_nodes(data, label_color = "black", ...) label_fill_fixed_nodes(data, label_fill = "white", ...) label_size_fixed_nodes(data, label_size = 4, ...) label_alpha_fixed_nodes(data, label_alpha = 1, ...) label_family_fixed_nodes(data, label_family = "sans", ...) label_fontface_fixed_nodes(data, label_fontface = "plain", ...) label_hjust_fixed_nodes(data, label_hjust = "center", ...) label_vjust_fixed_nodes(data, label_vjust = "middle", ...) label_lineheight_fixed_nodes(data, label_lineheight = 1, ...) all_pos_nodes(data, expr, ...) hide_pos_nodes(data, ...) show_pos_nodes(data, ...) colour_pos_nodes(data, colour = "black", ...) color_pos_nodes(data, color = "black", ...) linetype_pos_nodes(data, linetype = 1, ...) size_pos_nodes(data, size = 1, ...) alpha_pos_nodes(data, alpha = 1, ...) label_colour_pos_nodes(data, label_colour = "black", ...) label_color_pos_nodes(data, label_color = "black", ...) label_fill_pos_nodes(data, label_fill = "white", ...) label_size_pos_nodes(data, label_size = 4, ...) label_alpha_pos_nodes(data, label_alpha = 1, ...) label_family_pos_nodes(data, label_family = "sans", ...) label_fontface_pos_nodes(data, label_fontface = "plain", ...) label_hjust_pos_nodes(data, label_hjust = "center", ...) label_vjust_pos_nodes(data, label_vjust = "middle", ...) label_lineheight_pos_nodes(data, label_lineheight = 1, ...) all_neg_nodes(data, expr, ...) hide_neg_nodes(data, ...) show_neg_nodes(data, ...) colour_neg_nodes(data, colour = "black", ...) color_neg_nodes(data, color = "black", ...) linetype_neg_nodes(data, linetype = 1, ...) size_neg_nodes(data, size = 1, ...) alpha_neg_nodes(data, alpha = 1, ...) label_colour_neg_nodes(data, label_colour = "black", ...) label_color_neg_nodes(data, label_color = "black", ...) label_fill_neg_nodes(data, label_fill = "white", ...) label_size_neg_nodes(data, label_size = 4, ...) label_alpha_neg_nodes(data, label_alpha = 1, ...) label_family_neg_nodes(data, label_family = "sans", ...) label_fontface_neg_nodes(data, label_fontface = "plain", ...) label_hjust_neg_nodes(data, label_hjust = "center", ...) label_vjust_neg_nodes(data, label_vjust = "middle", ...) label_lineheight_neg_nodes(data, label_lineheight = 1, ...) all_sig_edges(data, expr, ...) hide_sig_edges(data, ...) show_sig_edges(data, ...) colour_sig_edges(data, colour = "black", ...) color_sig_edges(data, color = "black", ...) linetype_sig_edges(data, linetype = 1, ...) size_sig_edges(data, size = 1, ...) alpha_sig_edges(data, alpha = 1, ...) label_colour_sig_edges(data, label_colour = "black", ...) label_color_sig_edges(data, label_color = "black", ...) label_fill_sig_edges(data, label_fill = "white", ...) label_size_sig_edges(data, label_size = 4, ...) label_alpha_sig_edges(data, label_alpha = 1, ...) label_family_sig_edges(data, label_family = "sans", ...) label_fontface_sig_edges(data, label_fontface = "plain", ...) label_hjust_sig_edges(data, label_hjust = "center", ...) label_vjust_sig_edges(data, label_vjust = "middle", ...) label_lineheight_sig_edges(data, label_lineheight = 1, ...) all_nonsig_edges(data, expr, ...) hide_nonsig_edges(data, ...) show_nonsig_edges(data, ...) colour_nonsig_edges(data, colour = "black", ...) color_nonsig_edges(data, color = "black", ...) linetype_nonsig_edges(data, linetype = 1, ...) size_nonsig_edges(data, size = 1, ...) alpha_nonsig_edges(data, alpha = 1, ...) label_colour_nonsig_edges(data, label_colour = "black", ...) label_color_nonsig_edges(data, label_color = "black", ...) label_fill_nonsig_edges(data, label_fill = "white", ...) label_size_nonsig_edges(data, label_size = 4, ...) label_alpha_nonsig_edges(data, label_alpha = 1, ...) label_family_nonsig_edges(data, label_family = "sans", ...) label_fontface_nonsig_edges(data, label_fontface = "plain", ...) label_hjust_nonsig_edges(data, label_hjust = "center", ...) label_vjust_nonsig_edges(data, label_vjust = "middle", ...) label_lineheight_nonsig_edges(data, label_lineheight = 1, ...) all_fixed_edges(data, expr, ...) hide_fixed_edges(data, ...) show_fixed_edges(data, ...) colour_fixed_edges(data, colour = "black", ...) color_fixed_edges(data, color = "black", ...) linetype_fixed_edges(data, linetype = 1, ...) size_fixed_edges(data, size = 1, ...) alpha_fixed_edges(data, alpha = 1, ...) label_colour_fixed_edges(data, label_colour = "black", ...) label_color_fixed_edges(data, label_color = "black", ...) label_fill_fixed_edges(data, label_fill = "white", ...) label_size_fixed_edges(data, label_size = 4, ...) label_alpha_fixed_edges(data, label_alpha = 1, ...) label_family_fixed_edges(data, label_family = "sans", ...) label_fontface_fixed_edges(data, label_fontface = "plain", ...) label_hjust_fixed_edges(data, label_hjust = "center", ...) label_vjust_fixed_edges(data, label_vjust = "middle", ...) label_lineheight_fixed_edges(data, label_lineheight = 1, ...) all_pos_edges(data, expr, ...) hide_pos_edges(data, ...) show_pos_edges(data, ...) colour_pos_edges(data, colour = "black", ...) color_pos_edges(data, color = "black", ...) linetype_pos_edges(data, linetype = 1, ...) size_pos_edges(data, size = 1, ...) alpha_pos_edges(data, alpha = 1, ...) label_colour_pos_edges(data, label_colour = "black", ...) label_color_pos_edges(data, label_color = "black", ...) label_fill_pos_edges(data, label_fill = "white", ...) label_size_pos_edges(data, label_size = 4, ...) label_alpha_pos_edges(data, label_alpha = 1, ...) label_family_pos_edges(data, label_family = "sans", ...) label_fontface_pos_edges(data, label_fontface = "plain", ...) label_hjust_pos_edges(data, label_hjust = "center", ...) label_vjust_pos_edges(data, label_vjust = "middle", ...) label_lineheight_pos_edges(data, label_lineheight = 1, ...) all_neg_edges(data, expr, ...) hide_neg_edges(data, ...) show_neg_edges(data, ...) colour_neg_edges(data, colour = "black", ...) color_neg_edges(data, color = "black", ...) linetype_neg_edges(data, linetype = 1, ...) size_neg_edges(data, size = 1, ...) alpha_neg_edges(data, alpha = 1, ...) label_colour_neg_edges(data, label_colour = "black", ...) label_color_neg_edges(data, label_color = "black", ...) label_fill_neg_edges(data, label_fill = "white", ...) label_size_neg_edges(data, label_size = 4, ...) label_alpha_neg_edges(data, label_alpha = 1, ...) label_family_neg_edges(data, label_family = "sans", ...) label_fontface_neg_edges(data, label_fontface = "plain", ...) label_hjust_neg_edges(data, label_hjust = "center", ...) label_vjust_neg_edges(data, label_vjust = "middle", ...) label_lineheight_neg_edges(data, label_lineheight = 1, ...)
data |
Object to manipulate. |
condition |
Expression that returns a logical vector when evaluated in
the environment of |
expr |
Expression to perform on elements of |
... |
Additional arguments passed to and from functions. |
element |
Character vector. The elements of the |
colour |
Atomic character vector, indicating which colour to assign to the selected elements. |
color |
Atomic character vector, indicating which color to assign to the selected elements. |
linetype |
Atomic character vector, indicating which linetype to assign to the selected elements. |
size |
Atomic character vector, indicating which size to assign to the selected elements. |
alpha |
Atomic character vector, indicating which alpha to assign to the selected elements. |
fill |
Atomic character vector, indicating which fill to assign to the selected elements. |
label_colour |
Atomic character vector, indicating which label_colour to assign to the selected elements. |
label_color |
Atomic character vector, indicating which label_color to assign to the selected elements. |
label_fill |
Atomic character vector, indicating which label_fill to assign to the selected elements. |
label_size |
Atomic character vector, indicating which label_size to assign to the selected elements. |
label_alpha |
Atomic character vector, indicating which label_alpha to assign to the selected elements. |
label_family |
Atomic character vector, indicating which label_family to assign to the selected elements. |
label_fontface |
Atomic character vector, indicating which label_fontface to assign to the selected elements. |
label_hjust |
Atomic character vector, indicating which label_hjust to assign to the selected elements. |
label_vjust |
Atomic character vector, indicating which label_vjust to assign to the selected elements. |
label_lineheight |
Atomic character vector, indicating which label_lineheight to assign to the selected elements. |
label_location |
Atomic character vector, indicating which label_location to assign to the selected elements. |
Object of the same class as data
.
library(lavaan) res <- sem("dist ~ speed", cars, meanstructure = TRUE) p <- prepare_graph(res) out <- if_edit(p, condition = {pval < .05}, expr = {label = "sig"}) out <- if_edges(p, condition = {pval < .05}, expr = {label = "sig"}) out <- if_nodes(p, condition = {pval < .05}, expr = {label = "sig"}) out <- all_sig(p, expr = {label = "sig"}) out <- hide_sig(p) out <- show_sig(p) out <- colour_sig(p, { colour = "black" }) out <- color_sig(p, { color = "black" }) out <- linetype_sig(p, { linetype = 1 }) out <- size_sig(p, { size = 1 }) out <- alpha_sig(p, { alpha = 1 }) out <- fill_sig(p, { fill = "white" }) out <- label_colour_sig(p, { label_colour = "black" }) out <- label_color_sig(p, { label_color = "black" }) out <- label_fill_sig(p, { label_fill = "white" }) out <- label_size_sig(p, { label_size = 4 }) out <- label_alpha_sig(p, { label_alpha = 1 }) out <- label_family_sig(p, { label_family = "sans" }) out <- label_fontface_sig(p, { label_fontface = "plain" }) out <- label_hjust_sig(p, { label_hjust = "center" }) out <- label_vjust_sig(p, { label_vjust = "middle" }) out <- label_lineheight_sig(p, { label_lineheight = 1 }) out <- label_location_sig(p, { label_location = .5 }) out <- all_nonsig(p, expr = {label = "sig"}) out <- hide_nonsig(p) out <- show_nonsig(p) out <- colour_nonsig(p, { colour = "black" }) out <- color_nonsig(p, { color = "black" }) out <- linetype_nonsig(p, { linetype = 1 }) out <- size_nonsig(p, { size = 1 }) out <- alpha_nonsig(p, { alpha = 1 }) out <- fill_nonsig(p, { fill = "white" }) out <- label_colour_nonsig(p, { label_colour = "black" }) out <- label_color_nonsig(p, { label_color = "black" }) out <- label_fill_nonsig(p, { label_fill = "white" }) out <- label_size_nonsig(p, { label_size = 4 }) out <- label_alpha_nonsig(p, { label_alpha = 1 }) out <- label_family_nonsig(p, { label_family = "sans" }) out <- label_fontface_nonsig(p, { label_fontface = "plain" }) out <- label_hjust_nonsig(p, { label_hjust = "center" }) out <- label_vjust_nonsig(p, { label_vjust = "middle" }) out <- label_lineheight_nonsig(p, { label_lineheight = 1 }) out <- label_location_nonsig(p, { label_location = .5 }) out <- all_fixed(p, expr = {label = "sig"}) out <- hide_fixed(p) out <- show_fixed(p) out <- colour_fixed(p, { colour = "black" }) out <- color_fixed(p, { color = "black" }) out <- linetype_fixed(p, { linetype = 1 }) out <- size_fixed(p, { size = 1 }) out <- alpha_fixed(p, { alpha = 1 }) out <- fill_fixed(p, { fill = "white" }) out <- label_colour_fixed(p, { label_colour = "black" }) out <- label_color_fixed(p, { label_color = "black" }) out <- label_fill_fixed(p, { label_fill = "white" }) out <- label_size_fixed(p, { label_size = 4 }) out <- label_alpha_fixed(p, { label_alpha = 1 }) out <- label_family_fixed(p, { label_family = "sans" }) out <- label_fontface_fixed(p, { label_fontface = "plain" }) out <- label_hjust_fixed(p, { label_hjust = "center" }) out <- label_vjust_fixed(p, { label_vjust = "middle" }) out <- label_lineheight_fixed(p, { label_lineheight = 1 }) out <- label_location_fixed(p, { label_location = .5 }) out <- all_pos(p, expr = {label = "sig"}) out <- hide_pos(p) out <- show_pos(p) out <- colour_pos(p, { colour = "black" }) out <- color_pos(p, { color = "black" }) out <- linetype_pos(p, { linetype = 1 }) out <- size_pos(p, { size = 1 }) out <- alpha_pos(p, { alpha = 1 }) out <- fill_pos(p, { fill = "white" }) out <- label_colour_pos(p, { label_colour = "black" }) out <- label_color_pos(p, { label_color = "black" }) out <- label_fill_pos(p, { label_fill = "white" }) out <- label_size_pos(p, { label_size = 4 }) out <- label_alpha_pos(p, { label_alpha = 1 }) out <- label_family_pos(p, { label_family = "sans" }) out <- label_fontface_pos(p, { label_fontface = "plain" }) out <- label_hjust_pos(p, { label_hjust = "center" }) out <- label_vjust_pos(p, { label_vjust = "middle" }) out <- label_lineheight_pos(p, { label_lineheight = 1 }) out <- label_location_pos(p, { label_location = .5 }) out <- all_neg(p, expr = {label = "sig"}) out <- hide_neg(p) out <- show_neg(p) out <- colour_neg(p, { colour = "black" }) out <- color_neg(p, { color = "black" }) out <- linetype_neg(p, { linetype = 1 }) out <- size_neg(p, { size = 1 }) out <- alpha_neg(p, { alpha = 1 }) out <- fill_neg(p, { fill = "white" }) out <- label_colour_neg(p, { label_colour = "black" }) out <- label_color_neg(p, { label_color = "black" }) out <- label_fill_neg(p, { label_fill = "white" }) out <- label_size_neg(p, { label_size = 4 }) out <- label_alpha_neg(p, { label_alpha = 1 }) out <- label_family_neg(p, { label_family = "sans" }) out <- label_fontface_neg(p, { label_fontface = "plain" }) out <- label_hjust_neg(p, { label_hjust = "center" }) out <- label_vjust_neg(p, { label_vjust = "middle" }) out <- label_lineheight_neg(p, { label_lineheight = 1 }) out <- label_location_neg(p, { label_location = .5 }) out <- all_var(p, expr = {label = "sig"}) out <- hide_var(p) out <- show_var(p) out <- colour_var(p, { colour = "black" }) out <- color_var(p, { color = "black" }) out <- linetype_var(p, { linetype = 1 }) out <- size_var(p, { size = 1 }) out <- alpha_var(p, { alpha = 1 }) out <- label_colour_var(p, { label_colour = "black" }) out <- label_color_var(p, { label_color = "black" }) out <- label_fill_var(p, { label_fill = "white" }) out <- label_size_var(p, { label_size = 4 }) out <- label_alpha_var(p, { label_alpha = 1 }) out <- label_family_var(p, { label_family = "sans" }) out <- label_fontface_var(p, { label_fontface = "plain" }) out <- label_hjust_var(p, { label_hjust = "center" }) out <- label_vjust_var(p, { label_vjust = "middle" }) out <- label_lineheight_var(p, { label_lineheight = 1 }) out <- all_cov(p, expr = {label = "sig"}) out <- hide_cov(p) out <- show_cov(p) out <- colour_cov(p, { colour = "black" }) out <- color_cov(p, { color = "black" }) out <- linetype_cov(p, { linetype = 1 }) out <- size_cov(p, { size = 1 }) out <- alpha_cov(p, { alpha = 1 }) out <- label_colour_cov(p, { label_colour = "black" }) out <- label_color_cov(p, { label_color = "black" }) out <- label_fill_cov(p, { label_fill = "white" }) out <- label_size_cov(p, { label_size = 4 }) out <- label_alpha_cov(p, { label_alpha = 1 }) out <- label_family_cov(p, { label_family = "sans" }) out <- label_fontface_cov(p, { label_fontface = "plain" }) out <- label_hjust_cov(p, { label_hjust = "center" }) out <- label_vjust_cov(p, { label_vjust = "middle" }) out <- label_lineheight_cov(p, { label_lineheight = 1 }) out <- label_location_cov(p, { label_location = .5 }) out <- all_reg(p, expr = {label = "sig"}) out <- hide_reg(p) out <- show_reg(p) out <- colour_reg(p, { colour = "black" }) out <- color_reg(p, { color = "black" }) out <- linetype_reg(p, { linetype = 1 }) out <- size_reg(p, { size = 1 }) out <- alpha_reg(p, { alpha = 1 }) out <- label_colour_reg(p, { label_colour = "black" }) out <- label_color_reg(p, { label_color = "black" }) out <- label_fill_reg(p, { label_fill = "white" }) out <- label_size_reg(p, { label_size = 4 }) out <- label_alpha_reg(p, { label_alpha = 1 }) out <- label_family_reg(p, { label_family = "sans" }) out <- label_fontface_reg(p, { label_fontface = "plain" }) out <- label_hjust_reg(p, { label_hjust = "center" }) out <- label_vjust_reg(p, { label_vjust = "middle" }) out <- label_lineheight_reg(p, { label_lineheight = 1 }) out <- label_location_reg(p, { label_location = .5 }) out <- all_load(p, expr = {label = "sig"}) out <- hide_load(p) out <- show_load(p) out <- colour_load(p, { colour = "black" }) out <- color_load(p, { color = "black" }) out <- linetype_load(p, { linetype = 1 }) out <- size_load(p, { size = 1 }) out <- alpha_load(p, { alpha = 1 }) out <- label_colour_load(p, { label_colour = "black" }) out <- label_color_load(p, { label_color = "black" }) out <- label_fill_load(p, { label_fill = "white" }) out <- label_size_load(p, { label_size = 4 }) out <- label_alpha_load(p, { label_alpha = 1 }) out <- label_family_load(p, { label_family = "sans" }) out <- label_fontface_load(p, { label_fontface = "plain" }) out <- label_hjust_load(p, { label_hjust = "center" }) out <- label_vjust_load(p, { label_vjust = "middle" }) out <- label_lineheight_load(p, { label_lineheight = 1 }) out <- label_location_load(p, { label_location = .5 }) out <- all_obs(p, expr = {label = "sig"}) out <- hide_obs(p) out <- show_obs(p) out <- colour_obs(p, { colour = "black" }) out <- color_obs(p, { color = "black" }) out <- linetype_obs(p, { linetype = 1 }) out <- size_obs(p, { size = 1 }) out <- alpha_obs(p, { alpha = 1 }) out <- fill_obs(p, { fill = "white" }) out <- label_colour_obs(p, { label_colour = "black" }) out <- label_color_obs(p, { label_color = "black" }) out <- label_fill_obs(p, { label_fill = "white" }) out <- label_size_obs(p, { label_size = 4 }) out <- label_alpha_obs(p, { label_alpha = 1 }) out <- label_family_obs(p, { label_family = "sans" }) out <- label_fontface_obs(p, { label_fontface = "plain" }) out <- label_hjust_obs(p, { label_hjust = "center" }) out <- label_vjust_obs(p, { label_vjust = "middle" }) out <- label_lineheight_obs(p, { label_lineheight = 1 }) out <- all_latent(p, expr = {label = "sig"}) out <- hide_latent(p) out <- show_latent(p) out <- colour_latent(p, { colour = "black" }) out <- color_latent(p, { color = "black" }) out <- linetype_latent(p, { linetype = 1 }) out <- size_latent(p, { size = 1 }) out <- alpha_latent(p, { alpha = 1 }) out <- fill_latent(p, { fill = "white" }) out <- label_colour_latent(p, { label_colour = "black" }) out <- label_color_latent(p, { label_color = "black" }) out <- label_fill_latent(p, { label_fill = "white" }) out <- label_size_latent(p, { label_size = 4 }) out <- label_alpha_latent(p, { label_alpha = 1 }) out <- label_family_latent(p, { label_family = "sans" }) out <- label_fontface_latent(p, { label_fontface = "plain" }) out <- label_hjust_latent(p, { label_hjust = "center" }) out <- label_vjust_latent(p, { label_vjust = "middle" }) out <- label_lineheight_latent(p, { label_lineheight = 1 }) out <- all_sig(p, expr = {label = "sig"}) out <- hide_sig(p) out <- show_sig(p) out <- colour_sig(p, { colour = "black" }) out <- color_sig(p, { color = "black" }) out <- linetype_sig(p, { linetype = 1 }) out <- size_sig(p, { size = 1 }) out <- alpha_sig(p, { alpha = 1 }) out <- label_colour_sig(p, { label_colour = "black" }) out <- label_color_sig(p, { label_color = "black" }) out <- label_fill_sig(p, { label_fill = "white" }) out <- label_size_sig(p, { label_size = 4 }) out <- label_alpha_sig(p, { label_alpha = 1 }) out <- label_family_sig(p, { label_family = "sans" }) out <- label_fontface_sig(p, { label_fontface = "plain" }) out <- label_hjust_sig(p, { label_hjust = "center" }) out <- label_vjust_sig(p, { label_vjust = "middle" }) out <- label_lineheight_sig(p, { label_lineheight = 1 }) out <- all_nonsig(p, expr = {label = "sig"}) out <- hide_nonsig(p) out <- show_nonsig(p) out <- colour_nonsig(p, { colour = "black" }) out <- color_nonsig(p, { color = "black" }) out <- linetype_nonsig(p, { linetype = 1 }) out <- size_nonsig(p, { size = 1 }) out <- alpha_nonsig(p, { alpha = 1 }) out <- label_colour_nonsig(p, { label_colour = "black" }) out <- label_color_nonsig(p, { label_color = "black" }) out <- label_fill_nonsig(p, { label_fill = "white" }) out <- label_size_nonsig(p, { label_size = 4 }) out <- label_alpha_nonsig(p, { label_alpha = 1 }) out <- label_family_nonsig(p, { label_family = "sans" }) out <- label_fontface_nonsig(p, { label_fontface = "plain" }) out <- label_hjust_nonsig(p, { label_hjust = "center" }) out <- label_vjust_nonsig(p, { label_vjust = "middle" }) out <- label_lineheight_nonsig(p, { label_lineheight = 1 }) out <- all_fixed(p, expr = {label = "sig"}) out <- hide_fixed(p) out <- show_fixed(p) out <- colour_fixed(p, { colour = "black" }) out <- color_fixed(p, { color = "black" }) out <- linetype_fixed(p, { linetype = 1 }) out <- size_fixed(p, { size = 1 }) out <- alpha_fixed(p, { alpha = 1 }) out <- label_colour_fixed(p, { label_colour = "black" }) out <- label_color_fixed(p, { label_color = "black" }) out <- label_fill_fixed(p, { label_fill = "white" }) out <- label_size_fixed(p, { label_size = 4 }) out <- label_alpha_fixed(p, { label_alpha = 1 }) out <- label_family_fixed(p, { label_family = "sans" }) out <- label_fontface_fixed(p, { label_fontface = "plain" }) out <- label_hjust_fixed(p, { label_hjust = "center" }) out <- label_vjust_fixed(p, { label_vjust = "middle" }) out <- label_lineheight_fixed(p, { label_lineheight = 1 }) out <- all_pos(p, expr = {label = "sig"}) out <- hide_pos(p) out <- show_pos(p) out <- colour_pos(p, { colour = "black" }) out <- color_pos(p, { color = "black" }) out <- linetype_pos(p, { linetype = 1 }) out <- size_pos(p, { size = 1 }) out <- alpha_pos(p, { alpha = 1 }) out <- label_colour_pos(p, { label_colour = "black" }) out <- label_color_pos(p, { label_color = "black" }) out <- label_fill_pos(p, { label_fill = "white" }) out <- label_size_pos(p, { label_size = 4 }) out <- label_alpha_pos(p, { label_alpha = 1 }) out <- label_family_pos(p, { label_family = "sans" }) out <- label_fontface_pos(p, { label_fontface = "plain" }) out <- label_hjust_pos(p, { label_hjust = "center" }) out <- label_vjust_pos(p, { label_vjust = "middle" }) out <- label_lineheight_pos(p, { label_lineheight = 1 }) out <- all_neg(p, expr = {label = "sig"}) out <- hide_neg(p) out <- show_neg(p) out <- colour_neg(p, { colour = "black" }) out <- color_neg(p, { color = "black" }) out <- linetype_neg(p, { linetype = 1 }) out <- size_neg(p, { size = 1 }) out <- alpha_neg(p, { alpha = 1 }) out <- label_colour_neg(p, { label_colour = "black" }) out <- label_color_neg(p, { label_color = "black" }) out <- label_fill_neg(p, { label_fill = "white" }) out <- label_size_neg(p, { label_size = 4 }) out <- label_alpha_neg(p, { label_alpha = 1 }) out <- label_family_neg(p, { label_family = "sans" }) out <- label_fontface_neg(p, { label_fontface = "plain" }) out <- label_hjust_neg(p, { label_hjust = "center" }) out <- label_vjust_neg(p, { label_vjust = "middle" }) out <- label_lineheight_neg(p, { label_lineheight = 1 }) out <- all_sig(p, expr = {label = "sig"}) out <- hide_sig(p) out <- show_sig(p) out <- colour_sig(p, { colour = "black" }) out <- color_sig(p, { color = "black" }) out <- linetype_sig(p, { linetype = 1 }) out <- size_sig(p, { size = 1 }) out <- alpha_sig(p, { alpha = 1 }) out <- label_colour_sig(p, { label_colour = "black" }) out <- label_color_sig(p, { label_color = "black" }) out <- label_fill_sig(p, { label_fill = "white" }) out <- label_size_sig(p, { label_size = 4 }) out <- label_alpha_sig(p, { label_alpha = 1 }) out <- label_family_sig(p, { label_family = "sans" }) out <- label_fontface_sig(p, { label_fontface = "plain" }) out <- label_hjust_sig(p, { label_hjust = "center" }) out <- label_vjust_sig(p, { label_vjust = "middle" }) out <- label_lineheight_sig(p, { label_lineheight = 1 }) out <- all_nonsig(p, expr = {label = "sig"}) out <- hide_nonsig(p) out <- show_nonsig(p) out <- colour_nonsig(p, { colour = "black" }) out <- color_nonsig(p, { color = "black" }) out <- linetype_nonsig(p, { linetype = 1 }) out <- size_nonsig(p, { size = 1 }) out <- alpha_nonsig(p, { alpha = 1 }) out <- label_colour_nonsig(p, { label_colour = "black" }) out <- label_color_nonsig(p, { label_color = "black" }) out <- label_fill_nonsig(p, { label_fill = "white" }) out <- label_size_nonsig(p, { label_size = 4 }) out <- label_alpha_nonsig(p, { label_alpha = 1 }) out <- label_family_nonsig(p, { label_family = "sans" }) out <- label_fontface_nonsig(p, { label_fontface = "plain" }) out <- label_hjust_nonsig(p, { label_hjust = "center" }) out <- label_vjust_nonsig(p, { label_vjust = "middle" }) out <- label_lineheight_nonsig(p, { label_lineheight = 1 }) out <- all_fixed(p, expr = {label = "sig"}) out <- hide_fixed(p) out <- show_fixed(p) out <- colour_fixed(p, { colour = "black" }) out <- color_fixed(p, { color = "black" }) out <- linetype_fixed(p, { linetype = 1 }) out <- size_fixed(p, { size = 1 }) out <- alpha_fixed(p, { alpha = 1 }) out <- label_colour_fixed(p, { label_colour = "black" }) out <- label_color_fixed(p, { label_color = "black" }) out <- label_fill_fixed(p, { label_fill = "white" }) out <- label_size_fixed(p, { label_size = 4 }) out <- label_alpha_fixed(p, { label_alpha = 1 }) out <- label_family_fixed(p, { label_family = "sans" }) out <- label_fontface_fixed(p, { label_fontface = "plain" }) out <- label_hjust_fixed(p, { label_hjust = "center" }) out <- label_vjust_fixed(p, { label_vjust = "middle" }) out <- label_lineheight_fixed(p, { label_lineheight = 1 }) out <- all_pos(p, expr = {label = "sig"}) out <- hide_pos(p) out <- show_pos(p) out <- colour_pos(p, { colour = "black" }) out <- color_pos(p, { color = "black" }) out <- linetype_pos(p, { linetype = 1 }) out <- size_pos(p, { size = 1 }) out <- alpha_pos(p, { alpha = 1 }) out <- label_colour_pos(p, { label_colour = "black" }) out <- label_color_pos(p, { label_color = "black" }) out <- label_fill_pos(p, { label_fill = "white" }) out <- label_size_pos(p, { label_size = 4 }) out <- label_alpha_pos(p, { label_alpha = 1 }) out <- label_family_pos(p, { label_family = "sans" }) out <- label_fontface_pos(p, { label_fontface = "plain" }) out <- label_hjust_pos(p, { label_hjust = "center" }) out <- label_vjust_pos(p, { label_vjust = "middle" }) out <- label_lineheight_pos(p, { label_lineheight = 1 }) out <- all_neg(p, expr = {label = "sig"}) out <- hide_neg(p) out <- show_neg(p) out <- colour_neg(p, { colour = "black" }) out <- color_neg(p, { color = "black" }) out <- linetype_neg(p, { linetype = 1 }) out <- size_neg(p, { size = 1 }) out <- alpha_neg(p, { alpha = 1 }) out <- label_colour_neg(p, { label_colour = "black" }) out <- label_color_neg(p, { label_color = "black" }) out <- label_fill_neg(p, { label_fill = "white" }) out <- label_size_neg(p, { label_size = 4 }) out <- label_alpha_neg(p, { label_alpha = 1 }) out <- label_family_neg(p, { label_family = "sans" }) out <- label_fontface_neg(p, { label_fontface = "plain" }) out <- label_hjust_neg(p, { label_hjust = "center" }) out <- label_vjust_neg(p, { label_vjust = "middle" }) out <- label_lineheight_neg(p, { label_lineheight = 1 })
library(lavaan) res <- sem("dist ~ speed", cars, meanstructure = TRUE) p <- prepare_graph(res) out <- if_edit(p, condition = {pval < .05}, expr = {label = "sig"}) out <- if_edges(p, condition = {pval < .05}, expr = {label = "sig"}) out <- if_nodes(p, condition = {pval < .05}, expr = {label = "sig"}) out <- all_sig(p, expr = {label = "sig"}) out <- hide_sig(p) out <- show_sig(p) out <- colour_sig(p, { colour = "black" }) out <- color_sig(p, { color = "black" }) out <- linetype_sig(p, { linetype = 1 }) out <- size_sig(p, { size = 1 }) out <- alpha_sig(p, { alpha = 1 }) out <- fill_sig(p, { fill = "white" }) out <- label_colour_sig(p, { label_colour = "black" }) out <- label_color_sig(p, { label_color = "black" }) out <- label_fill_sig(p, { label_fill = "white" }) out <- label_size_sig(p, { label_size = 4 }) out <- label_alpha_sig(p, { label_alpha = 1 }) out <- label_family_sig(p, { label_family = "sans" }) out <- label_fontface_sig(p, { label_fontface = "plain" }) out <- label_hjust_sig(p, { label_hjust = "center" }) out <- label_vjust_sig(p, { label_vjust = "middle" }) out <- label_lineheight_sig(p, { label_lineheight = 1 }) out <- label_location_sig(p, { label_location = .5 }) out <- all_nonsig(p, expr = {label = "sig"}) out <- hide_nonsig(p) out <- show_nonsig(p) out <- colour_nonsig(p, { colour = "black" }) out <- color_nonsig(p, { color = "black" }) out <- linetype_nonsig(p, { linetype = 1 }) out <- size_nonsig(p, { size = 1 }) out <- alpha_nonsig(p, { alpha = 1 }) out <- fill_nonsig(p, { fill = "white" }) out <- label_colour_nonsig(p, { label_colour = "black" }) out <- label_color_nonsig(p, { label_color = "black" }) out <- label_fill_nonsig(p, { label_fill = "white" }) out <- label_size_nonsig(p, { label_size = 4 }) out <- label_alpha_nonsig(p, { label_alpha = 1 }) out <- label_family_nonsig(p, { label_family = "sans" }) out <- label_fontface_nonsig(p, { label_fontface = "plain" }) out <- label_hjust_nonsig(p, { label_hjust = "center" }) out <- label_vjust_nonsig(p, { label_vjust = "middle" }) out <- label_lineheight_nonsig(p, { label_lineheight = 1 }) out <- label_location_nonsig(p, { label_location = .5 }) out <- all_fixed(p, expr = {label = "sig"}) out <- hide_fixed(p) out <- show_fixed(p) out <- colour_fixed(p, { colour = "black" }) out <- color_fixed(p, { color = "black" }) out <- linetype_fixed(p, { linetype = 1 }) out <- size_fixed(p, { size = 1 }) out <- alpha_fixed(p, { alpha = 1 }) out <- fill_fixed(p, { fill = "white" }) out <- label_colour_fixed(p, { label_colour = "black" }) out <- label_color_fixed(p, { label_color = "black" }) out <- label_fill_fixed(p, { label_fill = "white" }) out <- label_size_fixed(p, { label_size = 4 }) out <- label_alpha_fixed(p, { label_alpha = 1 }) out <- label_family_fixed(p, { label_family = "sans" }) out <- label_fontface_fixed(p, { label_fontface = "plain" }) out <- label_hjust_fixed(p, { label_hjust = "center" }) out <- label_vjust_fixed(p, { label_vjust = "middle" }) out <- label_lineheight_fixed(p, { label_lineheight = 1 }) out <- label_location_fixed(p, { label_location = .5 }) out <- all_pos(p, expr = {label = "sig"}) out <- hide_pos(p) out <- show_pos(p) out <- colour_pos(p, { colour = "black" }) out <- color_pos(p, { color = "black" }) out <- linetype_pos(p, { linetype = 1 }) out <- size_pos(p, { size = 1 }) out <- alpha_pos(p, { alpha = 1 }) out <- fill_pos(p, { fill = "white" }) out <- label_colour_pos(p, { label_colour = "black" }) out <- label_color_pos(p, { label_color = "black" }) out <- label_fill_pos(p, { label_fill = "white" }) out <- label_size_pos(p, { label_size = 4 }) out <- label_alpha_pos(p, { label_alpha = 1 }) out <- label_family_pos(p, { label_family = "sans" }) out <- label_fontface_pos(p, { label_fontface = "plain" }) out <- label_hjust_pos(p, { label_hjust = "center" }) out <- label_vjust_pos(p, { label_vjust = "middle" }) out <- label_lineheight_pos(p, { label_lineheight = 1 }) out <- label_location_pos(p, { label_location = .5 }) out <- all_neg(p, expr = {label = "sig"}) out <- hide_neg(p) out <- show_neg(p) out <- colour_neg(p, { colour = "black" }) out <- color_neg(p, { color = "black" }) out <- linetype_neg(p, { linetype = 1 }) out <- size_neg(p, { size = 1 }) out <- alpha_neg(p, { alpha = 1 }) out <- fill_neg(p, { fill = "white" }) out <- label_colour_neg(p, { label_colour = "black" }) out <- label_color_neg(p, { label_color = "black" }) out <- label_fill_neg(p, { label_fill = "white" }) out <- label_size_neg(p, { label_size = 4 }) out <- label_alpha_neg(p, { label_alpha = 1 }) out <- label_family_neg(p, { label_family = "sans" }) out <- label_fontface_neg(p, { label_fontface = "plain" }) out <- label_hjust_neg(p, { label_hjust = "center" }) out <- label_vjust_neg(p, { label_vjust = "middle" }) out <- label_lineheight_neg(p, { label_lineheight = 1 }) out <- label_location_neg(p, { label_location = .5 }) out <- all_var(p, expr = {label = "sig"}) out <- hide_var(p) out <- show_var(p) out <- colour_var(p, { colour = "black" }) out <- color_var(p, { color = "black" }) out <- linetype_var(p, { linetype = 1 }) out <- size_var(p, { size = 1 }) out <- alpha_var(p, { alpha = 1 }) out <- label_colour_var(p, { label_colour = "black" }) out <- label_color_var(p, { label_color = "black" }) out <- label_fill_var(p, { label_fill = "white" }) out <- label_size_var(p, { label_size = 4 }) out <- label_alpha_var(p, { label_alpha = 1 }) out <- label_family_var(p, { label_family = "sans" }) out <- label_fontface_var(p, { label_fontface = "plain" }) out <- label_hjust_var(p, { label_hjust = "center" }) out <- label_vjust_var(p, { label_vjust = "middle" }) out <- label_lineheight_var(p, { label_lineheight = 1 }) out <- all_cov(p, expr = {label = "sig"}) out <- hide_cov(p) out <- show_cov(p) out <- colour_cov(p, { colour = "black" }) out <- color_cov(p, { color = "black" }) out <- linetype_cov(p, { linetype = 1 }) out <- size_cov(p, { size = 1 }) out <- alpha_cov(p, { alpha = 1 }) out <- label_colour_cov(p, { label_colour = "black" }) out <- label_color_cov(p, { label_color = "black" }) out <- label_fill_cov(p, { label_fill = "white" }) out <- label_size_cov(p, { label_size = 4 }) out <- label_alpha_cov(p, { label_alpha = 1 }) out <- label_family_cov(p, { label_family = "sans" }) out <- label_fontface_cov(p, { label_fontface = "plain" }) out <- label_hjust_cov(p, { label_hjust = "center" }) out <- label_vjust_cov(p, { label_vjust = "middle" }) out <- label_lineheight_cov(p, { label_lineheight = 1 }) out <- label_location_cov(p, { label_location = .5 }) out <- all_reg(p, expr = {label = "sig"}) out <- hide_reg(p) out <- show_reg(p) out <- colour_reg(p, { colour = "black" }) out <- color_reg(p, { color = "black" }) out <- linetype_reg(p, { linetype = 1 }) out <- size_reg(p, { size = 1 }) out <- alpha_reg(p, { alpha = 1 }) out <- label_colour_reg(p, { label_colour = "black" }) out <- label_color_reg(p, { label_color = "black" }) out <- label_fill_reg(p, { label_fill = "white" }) out <- label_size_reg(p, { label_size = 4 }) out <- label_alpha_reg(p, { label_alpha = 1 }) out <- label_family_reg(p, { label_family = "sans" }) out <- label_fontface_reg(p, { label_fontface = "plain" }) out <- label_hjust_reg(p, { label_hjust = "center" }) out <- label_vjust_reg(p, { label_vjust = "middle" }) out <- label_lineheight_reg(p, { label_lineheight = 1 }) out <- label_location_reg(p, { label_location = .5 }) out <- all_load(p, expr = {label = "sig"}) out <- hide_load(p) out <- show_load(p) out <- colour_load(p, { colour = "black" }) out <- color_load(p, { color = "black" }) out <- linetype_load(p, { linetype = 1 }) out <- size_load(p, { size = 1 }) out <- alpha_load(p, { alpha = 1 }) out <- label_colour_load(p, { label_colour = "black" }) out <- label_color_load(p, { label_color = "black" }) out <- label_fill_load(p, { label_fill = "white" }) out <- label_size_load(p, { label_size = 4 }) out <- label_alpha_load(p, { label_alpha = 1 }) out <- label_family_load(p, { label_family = "sans" }) out <- label_fontface_load(p, { label_fontface = "plain" }) out <- label_hjust_load(p, { label_hjust = "center" }) out <- label_vjust_load(p, { label_vjust = "middle" }) out <- label_lineheight_load(p, { label_lineheight = 1 }) out <- label_location_load(p, { label_location = .5 }) out <- all_obs(p, expr = {label = "sig"}) out <- hide_obs(p) out <- show_obs(p) out <- colour_obs(p, { colour = "black" }) out <- color_obs(p, { color = "black" }) out <- linetype_obs(p, { linetype = 1 }) out <- size_obs(p, { size = 1 }) out <- alpha_obs(p, { alpha = 1 }) out <- fill_obs(p, { fill = "white" }) out <- label_colour_obs(p, { label_colour = "black" }) out <- label_color_obs(p, { label_color = "black" }) out <- label_fill_obs(p, { label_fill = "white" }) out <- label_size_obs(p, { label_size = 4 }) out <- label_alpha_obs(p, { label_alpha = 1 }) out <- label_family_obs(p, { label_family = "sans" }) out <- label_fontface_obs(p, { label_fontface = "plain" }) out <- label_hjust_obs(p, { label_hjust = "center" }) out <- label_vjust_obs(p, { label_vjust = "middle" }) out <- label_lineheight_obs(p, { label_lineheight = 1 }) out <- all_latent(p, expr = {label = "sig"}) out <- hide_latent(p) out <- show_latent(p) out <- colour_latent(p, { colour = "black" }) out <- color_latent(p, { color = "black" }) out <- linetype_latent(p, { linetype = 1 }) out <- size_latent(p, { size = 1 }) out <- alpha_latent(p, { alpha = 1 }) out <- fill_latent(p, { fill = "white" }) out <- label_colour_latent(p, { label_colour = "black" }) out <- label_color_latent(p, { label_color = "black" }) out <- label_fill_latent(p, { label_fill = "white" }) out <- label_size_latent(p, { label_size = 4 }) out <- label_alpha_latent(p, { label_alpha = 1 }) out <- label_family_latent(p, { label_family = "sans" }) out <- label_fontface_latent(p, { label_fontface = "plain" }) out <- label_hjust_latent(p, { label_hjust = "center" }) out <- label_vjust_latent(p, { label_vjust = "middle" }) out <- label_lineheight_latent(p, { label_lineheight = 1 }) out <- all_sig(p, expr = {label = "sig"}) out <- hide_sig(p) out <- show_sig(p) out <- colour_sig(p, { colour = "black" }) out <- color_sig(p, { color = "black" }) out <- linetype_sig(p, { linetype = 1 }) out <- size_sig(p, { size = 1 }) out <- alpha_sig(p, { alpha = 1 }) out <- label_colour_sig(p, { label_colour = "black" }) out <- label_color_sig(p, { label_color = "black" }) out <- label_fill_sig(p, { label_fill = "white" }) out <- label_size_sig(p, { label_size = 4 }) out <- label_alpha_sig(p, { label_alpha = 1 }) out <- label_family_sig(p, { label_family = "sans" }) out <- label_fontface_sig(p, { label_fontface = "plain" }) out <- label_hjust_sig(p, { label_hjust = "center" }) out <- label_vjust_sig(p, { label_vjust = "middle" }) out <- label_lineheight_sig(p, { label_lineheight = 1 }) out <- all_nonsig(p, expr = {label = "sig"}) out <- hide_nonsig(p) out <- show_nonsig(p) out <- colour_nonsig(p, { colour = "black" }) out <- color_nonsig(p, { color = "black" }) out <- linetype_nonsig(p, { linetype = 1 }) out <- size_nonsig(p, { size = 1 }) out <- alpha_nonsig(p, { alpha = 1 }) out <- label_colour_nonsig(p, { label_colour = "black" }) out <- label_color_nonsig(p, { label_color = "black" }) out <- label_fill_nonsig(p, { label_fill = "white" }) out <- label_size_nonsig(p, { label_size = 4 }) out <- label_alpha_nonsig(p, { label_alpha = 1 }) out <- label_family_nonsig(p, { label_family = "sans" }) out <- label_fontface_nonsig(p, { label_fontface = "plain" }) out <- label_hjust_nonsig(p, { label_hjust = "center" }) out <- label_vjust_nonsig(p, { label_vjust = "middle" }) out <- label_lineheight_nonsig(p, { label_lineheight = 1 }) out <- all_fixed(p, expr = {label = "sig"}) out <- hide_fixed(p) out <- show_fixed(p) out <- colour_fixed(p, { colour = "black" }) out <- color_fixed(p, { color = "black" }) out <- linetype_fixed(p, { linetype = 1 }) out <- size_fixed(p, { size = 1 }) out <- alpha_fixed(p, { alpha = 1 }) out <- label_colour_fixed(p, { label_colour = "black" }) out <- label_color_fixed(p, { label_color = "black" }) out <- label_fill_fixed(p, { label_fill = "white" }) out <- label_size_fixed(p, { label_size = 4 }) out <- label_alpha_fixed(p, { label_alpha = 1 }) out <- label_family_fixed(p, { label_family = "sans" }) out <- label_fontface_fixed(p, { label_fontface = "plain" }) out <- label_hjust_fixed(p, { label_hjust = "center" }) out <- label_vjust_fixed(p, { label_vjust = "middle" }) out <- label_lineheight_fixed(p, { label_lineheight = 1 }) out <- all_pos(p, expr = {label = "sig"}) out <- hide_pos(p) out <- show_pos(p) out <- colour_pos(p, { colour = "black" }) out <- color_pos(p, { color = "black" }) out <- linetype_pos(p, { linetype = 1 }) out <- size_pos(p, { size = 1 }) out <- alpha_pos(p, { alpha = 1 }) out <- label_colour_pos(p, { label_colour = "black" }) out <- label_color_pos(p, { label_color = "black" }) out <- label_fill_pos(p, { label_fill = "white" }) out <- label_size_pos(p, { label_size = 4 }) out <- label_alpha_pos(p, { label_alpha = 1 }) out <- label_family_pos(p, { label_family = "sans" }) out <- label_fontface_pos(p, { label_fontface = "plain" }) out <- label_hjust_pos(p, { label_hjust = "center" }) out <- label_vjust_pos(p, { label_vjust = "middle" }) out <- label_lineheight_pos(p, { label_lineheight = 1 }) out <- all_neg(p, expr = {label = "sig"}) out <- hide_neg(p) out <- show_neg(p) out <- colour_neg(p, { colour = "black" }) out <- color_neg(p, { color = "black" }) out <- linetype_neg(p, { linetype = 1 }) out <- size_neg(p, { size = 1 }) out <- alpha_neg(p, { alpha = 1 }) out <- label_colour_neg(p, { label_colour = "black" }) out <- label_color_neg(p, { label_color = "black" }) out <- label_fill_neg(p, { label_fill = "white" }) out <- label_size_neg(p, { label_size = 4 }) out <- label_alpha_neg(p, { label_alpha = 1 }) out <- label_family_neg(p, { label_family = "sans" }) out <- label_fontface_neg(p, { label_fontface = "plain" }) out <- label_hjust_neg(p, { label_hjust = "center" }) out <- label_vjust_neg(p, { label_vjust = "middle" }) out <- label_lineheight_neg(p, { label_lineheight = 1 }) out <- all_sig(p, expr = {label = "sig"}) out <- hide_sig(p) out <- show_sig(p) out <- colour_sig(p, { colour = "black" }) out <- color_sig(p, { color = "black" }) out <- linetype_sig(p, { linetype = 1 }) out <- size_sig(p, { size = 1 }) out <- alpha_sig(p, { alpha = 1 }) out <- label_colour_sig(p, { label_colour = "black" }) out <- label_color_sig(p, { label_color = "black" }) out <- label_fill_sig(p, { label_fill = "white" }) out <- label_size_sig(p, { label_size = 4 }) out <- label_alpha_sig(p, { label_alpha = 1 }) out <- label_family_sig(p, { label_family = "sans" }) out <- label_fontface_sig(p, { label_fontface = "plain" }) out <- label_hjust_sig(p, { label_hjust = "center" }) out <- label_vjust_sig(p, { label_vjust = "middle" }) out <- label_lineheight_sig(p, { label_lineheight = 1 }) out <- all_nonsig(p, expr = {label = "sig"}) out <- hide_nonsig(p) out <- show_nonsig(p) out <- colour_nonsig(p, { colour = "black" }) out <- color_nonsig(p, { color = "black" }) out <- linetype_nonsig(p, { linetype = 1 }) out <- size_nonsig(p, { size = 1 }) out <- alpha_nonsig(p, { alpha = 1 }) out <- label_colour_nonsig(p, { label_colour = "black" }) out <- label_color_nonsig(p, { label_color = "black" }) out <- label_fill_nonsig(p, { label_fill = "white" }) out <- label_size_nonsig(p, { label_size = 4 }) out <- label_alpha_nonsig(p, { label_alpha = 1 }) out <- label_family_nonsig(p, { label_family = "sans" }) out <- label_fontface_nonsig(p, { label_fontface = "plain" }) out <- label_hjust_nonsig(p, { label_hjust = "center" }) out <- label_vjust_nonsig(p, { label_vjust = "middle" }) out <- label_lineheight_nonsig(p, { label_lineheight = 1 }) out <- all_fixed(p, expr = {label = "sig"}) out <- hide_fixed(p) out <- show_fixed(p) out <- colour_fixed(p, { colour = "black" }) out <- color_fixed(p, { color = "black" }) out <- linetype_fixed(p, { linetype = 1 }) out <- size_fixed(p, { size = 1 }) out <- alpha_fixed(p, { alpha = 1 }) out <- label_colour_fixed(p, { label_colour = "black" }) out <- label_color_fixed(p, { label_color = "black" }) out <- label_fill_fixed(p, { label_fill = "white" }) out <- label_size_fixed(p, { label_size = 4 }) out <- label_alpha_fixed(p, { label_alpha = 1 }) out <- label_family_fixed(p, { label_family = "sans" }) out <- label_fontface_fixed(p, { label_fontface = "plain" }) out <- label_hjust_fixed(p, { label_hjust = "center" }) out <- label_vjust_fixed(p, { label_vjust = "middle" }) out <- label_lineheight_fixed(p, { label_lineheight = 1 }) out <- all_pos(p, expr = {label = "sig"}) out <- hide_pos(p) out <- show_pos(p) out <- colour_pos(p, { colour = "black" }) out <- color_pos(p, { color = "black" }) out <- linetype_pos(p, { linetype = 1 }) out <- size_pos(p, { size = 1 }) out <- alpha_pos(p, { alpha = 1 }) out <- label_colour_pos(p, { label_colour = "black" }) out <- label_color_pos(p, { label_color = "black" }) out <- label_fill_pos(p, { label_fill = "white" }) out <- label_size_pos(p, { label_size = 4 }) out <- label_alpha_pos(p, { label_alpha = 1 }) out <- label_family_pos(p, { label_family = "sans" }) out <- label_fontface_pos(p, { label_fontface = "plain" }) out <- label_hjust_pos(p, { label_hjust = "center" }) out <- label_vjust_pos(p, { label_vjust = "middle" }) out <- label_lineheight_pos(p, { label_lineheight = 1 }) out <- all_neg(p, expr = {label = "sig"}) out <- hide_neg(p) out <- show_neg(p) out <- colour_neg(p, { colour = "black" }) out <- color_neg(p, { color = "black" }) out <- linetype_neg(p, { linetype = 1 }) out <- size_neg(p, { size = 1 }) out <- alpha_neg(p, { alpha = 1 }) out <- label_colour_neg(p, { label_colour = "black" }) out <- label_color_neg(p, { label_color = "black" }) out <- label_fill_neg(p, { label_fill = "white" }) out <- label_size_neg(p, { label_size = 4 }) out <- label_alpha_neg(p, { label_alpha = 1 }) out <- label_family_neg(p, { label_family = "sans" }) out <- label_fontface_neg(p, { label_fontface = "plain" }) out <- label_hjust_neg(p, { label_hjust = "center" }) out <- label_vjust_neg(p, { label_vjust = "middle" }) out <- label_lineheight_neg(p, { label_lineheight = 1 })
A likelihood ratio test for class enumeration in latent class analysis, proposed by Lo, Mendell, & Rubin (2001) based on work by Vuong (1989). See Details for important clarification.
lr_lmr(x, ...)
lr_lmr(x, ...)
x |
An object for which a method exists. |
... |
Additional arguments. |
The likelihood ratio test for non-nested models, based on
work by Vuong (1989), is often used for class enumeration in latent class
analysis (see Lo, Mendell, & Rubin, 2001). Following work by Merkle,
You, & Preacher (2016), the models to be compared must first be tested for
distinguishability in the population, using the w2
test. The null
hypothesis is that the models are indistinguishable. If this null hypothesis
is not rejected, there is no point in statistical model comparison, either
using the LMR LRT or other statistics. If the null hypothesis is rejected,
the LMR LRT can be evaluated using a Z-test. This function wraps
\link[nonnest2]{vuongtest}
to perform that test.
A data.frame
containing the Z-value for the likelihood ratio test,
its p-value, df (which indicates the difference in number of parameters, not
true degrees of freedom, which may be zero), w2 (omega squared) statistic for
the test of distinguishability, an its p-value.
Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. Biometrika. 2001;88(3):767–778. doi:10.1093/biomet/88.3.767
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307-333. doi:10.2307/1912557
Merkle, E. C., You, D., & Preacher, K. (2016). Testing non-nested structural equation models. Psychological Methods, 21, 151-163. doi:10.1037/met0000038
df <- iris[c(1:5, 100:105), 1:3] names(df) <- letters[1:3] res <- mx_profiles(df, classes = 1:2) lr_lmr(res)
df <- iris[c(1:5, 100:105), 1:3] names(df) <- letters[1:3] res <- mx_profiles(df, classes = 1:2) lr_lmr(res)
For a multigroup model of class MxModel
,
conduct overall and pairwise likelihood ratio tests.
All submodels must be identical.
lr_test(x, compare = c("All", "A", "S", "F", "M", "Thresholds"), ...)
lr_test(x, compare = c("All", "A", "S", "F", "M", "Thresholds"), ...)
x |
An object for which a method exists. |
compare |
Character vector, indicating which matrices to constrain to be equal in pairwise comparisons. |
... |
Additional arguments passed to other functions. |
An object of class lr_test
and list
.
df <- iris[c(1:10, 140:150), c(1, 5)] names(df) <- c("x", "group") mod <- as_ram("x~1", data = df, group = "group") mod <- run_mx(mod) lr_test(mod)
df <- iris[c(1:10, 140:150), c(1, 5)] names(df) <- c("x", "group") mod <- as_ram("x~1", data = df, group = "group") mod <- run_mx(mod) lr_test(mod)
lsub
returns a list of the same length as
replacement
, each element of which is the result of applying
gsub
to x
using lapply
.
lsub(x, replacement = NULL, pattern = "{C}", fixed = TRUE, ...)
lsub(x, replacement = NULL, pattern = "{C}", fixed = TRUE, ...)
x |
A character vector where matches are sought. |
replacement |
a character vector of length 1 or more. Each element is
applied to |
pattern |
A character string containing a regular expression (or
character string when |
fixed |
logical. If TRUE, pattern is a string to be matched as is. Default: TRUE |
... |
Parameters passed on to |
A list of results returned by gsub
.
lsub("a{C}", 1:3)
lsub("a{C}", 1:3)
These synthetic data are based on a study by Maene and colleagues, which conducted an LCA with ordinal indicators on National, Regional, and Heritage Identities in Flemish (Belgian) high-school students with a migration background, and examined between class differences in perceived discrimination by teachers and depressive symptoms.
data(maene_identity)
data(maene_identity)
A data frame with 439 rows and 13 variables.
Ethnic_1 | ordered |
when I introduce myself, I would definitely say I belong to this group, answered on a 5-point Likert scale |
Ethnic_2 | ordered |
I have a strong sense of belonging to this group, answered on a 5-point Likert scale |
Ethnic_3 | ordered |
I see myself as a member of this group, answered on a 5-point Likert scale |
Belgian | ordered |
Do you feel a member of the Belgian group, answered on a 10-point Likert scale |
Flemish | ordered |
Do you feel a member of the Flemish group, answered on a 10-point Likert scale |
age | numeric |
Participant age |
sex | factor |
Participant sex |
ses | numeric |
Socio-economic status, measured using the International Socio-Economic Index of Occupational Status (ISEI) |
belgianborn | factor |
Whether or not the participant was born in Belgium |
age_belgium | numeric |
Age at which the participant migrated to Belgium |
vict_bully | factor |
Whether or not the participant has ever been the victim of peer bullying for any reason |
vict_teacher | factor |
Whether or not the participant has ever been insulted, threatened, pushed, treated unfairly or excluded by teachers because of their foreign descent, language use, and skin colour |
depression | numeric |
Scale scores of self-reported depressive feelings, assessed using the a ten-item scale with 5-point Likert-type response options |
Maene, C., D’hondt, F., Van Lissa, C. J., Thijs, J., & Stevens, P. A. (2022). Perceived teacher discrimination and depressive feelings in adolescents: the role of national, regional, and heritage identities in Flemish schools. Journal of youth and adolescence, 51(12), 2281-2293. doi:10.1007/s10964-022-01665-7
Generate syntax for a measurement model for latent variables.
This function relies on add_paths
to generate syntax.
measurement(x, ...)
measurement(x, ...)
x |
An object for which a method exists, including |
... |
Additional parameters passed to |
An object of class tidy_sem
.
dict <- tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5")) measurement(dict)
dict <- tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5")) measurement(dict)
Automatically set starting values for an OpenMx mixture model. This function
was designed to work with mixture models created using tidySEM
functions like mx_mixture
, and may not work with other
mxModel
s.
mixture_starts(model, splits, ...)
mixture_starts(model, splits, ...)
model |
A mixture model of class |
splits |
Optional. A numeric vector of length equal to the number of
rows in the |
... |
Additional arguments, passed to functions. |
Starting values are derived by the following procedure:
The mixture model is converted to a multi-group model.
The data are split along splits
, and assigned to the
corresponding groups of the multi-group model.
The multi-group model is run, and the final values of each group are assigned to the corresponding mixture component as starting values.
The mixture model is returned with these starting values.
If the argument splits
is not provided, the function will call
stats::kmeans(x = data, centers = classes)$cluster
,
where data
is extracted from the model
argument.
Sensible ways to split the data include:
Using Hierarchical clustering:
cutree(hclust(dist(data)), k = classes))
Using K-means clustering:
stats::kmeans(x = data, centers = classes)$cluster
Using agglomerative hierarchical clustering:
mclust::hclass(data = data), G = classes)[, 1]
Using a random split:
sample.int(n = classes,
size = nrow(data), replace = TRUE)
Returns an OpenMx::mxModel()
with starting values.
Shireman, E., Steinley, D. & Brusco, M.J. Examining the effect of initialization strategies on the performance of Gaussian mixture modeling. Behav Res 49, 282–293 (2017). doi:10.3758/s13428-015-0697-6
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" mod <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 2, data = df, run = FALSE) mod <- mixture_starts(mod) ## End(Not run)
## Not run: df <- iris[, 1, drop = FALSE] names(df) <- "x" mod <- mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 2, data = df, run = FALSE) mod <- mixture_starts(mod) ## End(Not run)
Expand the Mplus syntax for abbreviating lists of variable names.
mplus_expand_names(x)
mplus_expand_names(x)
x |
Atomic character string containing the variable names section of an Mplus syntax file. |
Character vector of names.
mplus_expand_names("test1-test12") mplus_expand_names("testa-testb")
mplus_expand_names("test1-test12") mplus_expand_names("testa-testb")
For each variable v that inherits
factor
, create a number of new variables equal
to levels(v)
to indicate group membership (1)
or non-membership (0) of that level.
The resulting dummies have class mxFactor
.
mx_dummies(x, classes = c("factor", "character"), ...)
mx_dummies(x, classes = c("factor", "character"), ...)
x |
An object for which a method exists. |
classes |
Character vector, indicating which classes to dummy code.
Defaults to |
... |
Arguments |
A data.frame
.
mx_dummies(iris[1:5,])
mx_dummies(iris[1:5,])
This function is a wrapper around mx_mixture
, adding the
default arguments of lavaan::growth()
to simplify the
specification of growth mixture models. This function is only
useful if all the latent variables in the model are growth factors.
mx_growth_mixture(model, classes = 1L, data = NULL, run = TRUE, ...)
mx_growth_mixture(model, classes = 1L, data = NULL, run = TRUE, ...)
model |
Syntax for the model; either a character string, or a list of
character strings, or a list of |
classes |
A vector of integers, indicating which class solutions to
generate. Defaults to 1L. E.g., |
data |
The data.frame to be used for model fitting. |
run |
Logical, whether or not to run the model. If |
... |
Additional arguments, passed to functions. |
Returns an OpenMx::mxModel()
.
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
## Not run: data("empathy") df <- empathy[1:6] mx_growth_mixture(model = "i =~ 1*ec1 + 1*ec2 + 1*ec3 +1*ec4 +1*ec5 +1*ec6 s =~ 0*ec1 + 1*ec2 + 2*ec3 +3*ec4 +4*ec5 +5*ec6 ec1 ~~ vec1*ec1 ec2 ~~ vec2*ec2 ec3 ~~ vec3*ec3 ec4 ~~ vec4*ec4 ec5 ~~ vec5*ec5 ec6 ~~ vec6*ec6 i ~~ 0*i s ~~ 0*s i ~~ 0*s", classes = 2, data = df) -> res ## End(Not run)
## Not run: data("empathy") df <- empathy[1:6] mx_growth_mixture(model = "i =~ 1*ec1 + 1*ec2 + 1*ec3 +1*ec4 +1*ec5 +1*ec6 s =~ 0*ec1 + 1*ec2 + 2*ec3 +3*ec4 +4*ec5 +5*ec6 ec1 ~~ vec1*ec1 ec2 ~~ vec2*ec2 ec3 ~~ vec3*ec3 ec4 ~~ vec4*ec4 ec5 ~~ vec5*ec5 ec6 ~~ vec6*ec6 i ~~ 0*i s ~~ 0*s i ~~ 0*s", classes = 2, data = df) -> res ## End(Not run)
This function simplifies the specification of latent class models: models that estimate membership of a categorical latent variable based on binary or ordinal indicators.
mx_lca(data = NULL, classes = 1L, run = TRUE, ...)
mx_lca(data = NULL, classes = 1L, run = TRUE, ...)
data |
The data.frame to be used for model fitting. |
classes |
A vector of integers, indicating which class solutions to
generate. Defaults to 1L. E.g., |
run |
Logical, whether or not to run the model. If |
... |
Additional arguments, passed to functions. |
Returns an OpenMx::mxModel()
.
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
## Not run: df <- data_mix_ordinal df[1:4] <- lapply(df, ordered) mx_lca(data = df, classes = 2) -> res ## End(Not run)
## Not run: df <- data_mix_ordinal df[1:4] <- lapply(df, ordered) mx_lca(data = df, classes = 2) -> res ## End(Not run)
Dynamically creates a batch of mixture models, with intelligent defaults. See Details for more information.
mx_mixture(model, classes = 1L, data = NULL, run = TRUE, ...)
mx_mixture(model, classes = 1L, data = NULL, run = TRUE, ...)
model |
Syntax for the model; either a character string, or a list of
character strings, or a list of |
classes |
A vector of integers, indicating which class solutions to
generate. Defaults to 1L. E.g., |
data |
The data.frame to be used for model fitting. |
run |
Logical, whether or not to run the model. If |
... |
Additional arguments, passed to functions. |
Model syntax can be specified in three ways, for ease of use and flexibility:
An atomic character string with lavaan syntax. Within this syntax,
the character string {C}
is dynamically substituted with the
correct class number using lsub
, for example to set unique
parameter labels for each class, or to specify equality constraints. E.g.,
x ~ m{C}*1
will be expanded to x ~ m1*1
and x ~ m2*1
when classes = 2
. The resulting syntax for each class will be
converted to an mxModel
using as_ram
.
A list of character strings with lavaan syntax. Each item of the list
will be converted to a class-specific mxModel
using
as_ram
.
A list of mxModel
objects, specified by the user.
Returns an OpenMx::mxModel()
.
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
## Not run: # Example 1: Dynamic model generation using {C} df <- iris[, 1, drop = FALSE] names(df) <- "x" mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1, data = df) # Example 2: Manually specified class-specific models df <- iris[1:2] names(df) <- c("x", "y") mx_mixture(model = list("y ~ a*x", "y ~ b*x"), meanstructure = TRUE, data = df) -> res # Example 3: Latent growth model df <- empathy[1:6] mx_mixture(model = "i =~ 1*ec1 + 1*ec2 + 1*ec3 +1*ec4 +1*ec5 +1*ec6 s =~ 0*ec1 + 1*ec2 + 2*ec3 +3*ec4 +4*ec5 +5*ec6", classes = 2, data = df) -> res ## End(Not run)
## Not run: # Example 1: Dynamic model generation using {C} df <- iris[, 1, drop = FALSE] names(df) <- "x" mx_mixture(model = "x ~ m{C}*1 x ~~ v{C}*x", classes = 1, data = df) # Example 2: Manually specified class-specific models df <- iris[1:2] names(df) <- c("x", "y") mx_mixture(model = list("y ~ a*x", "y ~ b*x"), meanstructure = TRUE, data = df) -> res # Example 3: Latent growth model df <- empathy[1:6] mx_mixture(model = "i =~ 1*ec1 + 1*ec2 + 1*ec3 +1*ec4 +1*ec5 +1*ec6 s =~ 0*ec1 + 1*ec2 + 2*ec3 +3*ec4 +4*ec5 +5*ec6", classes = 2, data = df) -> res ## End(Not run)
This function is a wrapper around mx_mixture
to simplify the
specification of latent profile models, also known as finite mixture models.
By default, the function estimates free means for all observed variables
across classes.
mx_profiles( data = NULL, classes = 1L, variances = "equal", covariances = "zero", run = TRUE, expand_grid = FALSE, ... )
mx_profiles( data = NULL, classes = 1L, variances = "equal", covariances = "zero", run = TRUE, expand_grid = FALSE, ... )
data |
The data.frame to be used for model fitting. |
classes |
A vector of integers, indicating which class solutions to
generate. Defaults to 1L. E.g., |
variances |
Character vector. Specifies which variance components to estimate. Defaults to "equal" (constrain variances across classes); the other option is "varying" (estimate variances freely across classes). Each element of this vector refers to one of the models you wish to run. |
covariances |
Character vector. Specifies which covariance components to estimate. Defaults to "zero" (covariances constrained to zero; this corresponds to an assumption of conditional independence of the indicators); other options are "equal" (covariances between items constrained to be equal across classes), and "varying" (free covariances across classes). |
run |
Logical, whether or not to run the model. If |
expand_grid |
Logical, whether or not to estimate all possible combinations of the |
... |
Additional arguments, passed to functions. |
Returns an OpenMx::mxModel()
.
Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended Practices in Latent Class Analysis using the Open-Source R-Package tidySEM. Structural Equation Modeling. doi:10.1080/10705511.2023.2250920
## Not run: data("empathy") df <- empathy[1:6] mx_profiles(data = df, classes = 2) -> res ## End(Not run)
## Not run: data("empathy") df <- empathy[1:6] mx_profiles(data = df, classes = 2) -> res ## End(Not run)
The order of class labels in LCA is arbitrary. This can result in a phenomenon called 'label switching', where classes change places between replications of an analysis. This function attempts to re-order classes in a substantively meaningful way.
mx_switch_labels(x, param = "weights", decreasing = TRUE, order = NULL)
mx_switch_labels(x, param = "weights", decreasing = TRUE, order = NULL)
x |
An |
param |
The parameter by which to order the classes,
defaults to |
decreasing |
logical. Should the classes be sorted in increasing or decreasing order? Default: TRUE |
order |
Integer, indicating the ordering of classes. Ignored when NULL (default). |
The argument param
can accept either:
The default string "weights", in which classes are sorted by size.
The OpenMx
matrix indicator for a specific model parameter; e.g.,
the first mean is indicated by "M[1,1]"
. These indicators can be viewed
by running table_results(x, columns = NULL)
.
The letter indicating an OpenMx
model matrix, e.g., "M"
refers to
the matrix of means. To account for all elements of the matrix, Euclidean
distance to the origin is used.
An MxModel
with "tidySEM"
attribute: "mixture"
## Not run: df <- iris[1:4] names(df) <- letters[1:4] res1 <- mx_profiles(data = df, classes = 2) mx_switch_labels(res1, decreasing = FALSE) ## End(Not run)
## Not run: df <- iris[1:4] names(df) <- letters[1:4] res1 <- mx_profiles(data = df, classes = 2) mx_switch_labels(res1, decreasing = FALSE) ## End(Not run)
Provides access to the nodes
element of a
sem_graph
object. This can be used to return or assign to the
nodes
element.
nodes(x) nodes(x) <- value
nodes(x) nodes(x) <- value
x |
Object of class sem_graph. |
value |
A valid value for |
data.frame
edg <- data.frame(from = "x", to = "y") p <- prepare_graph(edges = edg, layout = get_layout("x", "y", rows = 1)) nodes(p)
edg <- data.frame(from = "x", to = "y") p <- prepare_graph(edges = edg, layout = get_layout("x", "y", rows = 1)) nodes(p)
Concatenate vectors after converting to character and removing
NA
values. See paste
.
paste2(..., sep = " ", collapse = NULL, na.rm = TRUE)
paste2(..., sep = " ", collapse = NULL, na.rm = TRUE)
... |
one or more R objects, to be converted to character vectors. |
sep |
a character string to separate the terms.
Not |
collapse |
an optional character string to separate the results.
Not |
na.rm |
logical, indicating whether |
A character vector of the concatenated values.
paste2("word", NA)
paste2("word", NA)
This simulated dataset, based on work in progress by Plas and colleagues, contains six repeated measurements of the Depression subscale of the Symptom Checklist-90 (SCL-90).
data(plas_depression)
data(plas_depression)
A data frame with 978 rows and 6 variables.
These data are inspired by the Prospection in Stress-related Military Research (PRISMO) study, which examined of psychological problems after deployment in more than 1,000 Dutch military personnel who were deployed to Afghanistan, from 2005-2019.
scl.1 | integer |
Sum score of SCL90 depression pre-deployment |
scl.2 | integer |
Sum score of SCL90 depression 1 month post-deployment |
scl.3 | integer |
Sum score of SCL90 depression 6 months post-deployment |
scl.4 | integer |
Sum score of SCL90 depression 1 year post-deployment |
scl.5 | integer |
Sum score of SCL90 depression 2 years post-deployment |
scl.6 | integer |
Sum score of SCL90 depression 10 years post-deployment |
van der Wal, S. J., Gorter, R., Reijnen, A., Geuze, E., & Vermetten, E. (2019). Cohort profile: The Prospective Research In Stress-Related Military Operations (PRISMO) study in the Dutch Armed Forces. BMJ Open, 9(3), e026670. doi:10.1136/bmjopen-2018-026670
Creates a faceted plot of two-dimensional correlation plots and unidimensional density plots for a single mixture model.
plot_bivariate( x, variables = NULL, sd = TRUE, cors = TRUE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), return_list = FALSE, ... )
plot_bivariate( x, variables = NULL, sd = TRUE, cors = TRUE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), return_list = FALSE, ... )
x |
An object for which a method exists. |
variables |
Which variables to plot. If NULL, plots all variables that are present in the model. |
sd |
Logical. Whether to show the estimated standard deviations as lines emanating from the cluster centroid. |
cors |
Logical. Whether to show the estimated correlation (standardized covariance) as ellipses surrounding the cluster centroid. |
rawdata |
Logical. Whether to plot raw data, weighted by posterior class probability. |
bw |
Logical. Whether to make a black and white plot (for print) or a color plot. Defaults to FALSE, because these density plots are hard to read in black and white. |
alpha_range |
Numeric vector (0-1). Sets the transparency of geom_density and geom_point. |
return_list |
Logical. Whether to return a list of ggplot objects, or just the final plot. Defaults to FALSE. |
... |
Additional arguments. |
An object of class 'ggplot'.
Caspar J. van Lissa
iris_sample <- iris[c(1:5, 145:150), c("Sepal.Length", "Sepal.Width")] names(iris_sample) <- c("x", "y") res <- mx_profiles(iris_sample, classes = 2) plot_bivariate(res, rawdata = FALSE)
iris_sample <- iris[c(1:5, 145:150), c("Sepal.Length", "Sepal.Width")] names(iris_sample) <- c("x", "y") res <- mx_profiles(iris_sample, classes = 2) plot_bivariate(res, rawdata = FALSE)
Creates mixture density plots. For each variable, a Total density plot will be shown, along with separate density plots for each latent class, where cases are weighted by the posterior probability of being assigned to that class.
plot_density( x, variables = NULL, bw = FALSE, conditional = FALSE, alpha = 0.2, facet_labels = NULL )
plot_density( x, variables = NULL, bw = FALSE, conditional = FALSE, alpha = 0.2, facet_labels = NULL )
x |
Object for which a method exists. |
variables |
Which variables to plot. If NULL, plots all variables that are present in all models. |
bw |
Logical. Whether to make a black and white plot (for print) or a color plot. Defaults to FALSE, because these density plots are hard to read in black and white. |
conditional |
Logical. Whether to show a conditional density plot (surface area is divided among the latent classes), or a classic density plot (surface area of the total density plot is equal to one, and is divided among the classes). |
alpha |
Numeric (0-1). Only used when bw and conditional are FALSE. Sets the transparency of geom_density, so that classes with a small number of cases remain visible. |
facet_labels |
Named character vector, the names of which should
correspond to the facet labels one wishes to rename, and the values of which
provide new names for these facets. For example, to rename variables, in the
example with the 'iris' data below, one could specify:
|
An object of class 'ggplot'.
Caspar J. van Lissa
## Not run: dat <- iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")] names(dat) <- paste0("x", 1:4) res <- mx_profiles(dat, 1:3) plot_density(res) ## End(Not run)
## Not run: dat <- iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")] names(dat) <- paste0("x", 1:4) res <- mx_profiles(dat, 1:3) plot_density(res) ## End(Not run)
Creates a bar chart of categorical variable probabilities with bars reflecting the probability of category membership for each category of the observed variable.
plot_prob( x, variables = NULL, bars = c("Variable", "group", "class"), facet = c("group", "class", "Variable"), bw = FALSE, ... )
plot_prob( x, variables = NULL, bars = c("Variable", "group", "class"), facet = c("group", "class", "Variable"), bw = FALSE, ... )
x |
An object for which a method exists |
variables |
A character vectors with the names of the variables to be plotted (optional). |
bars |
Atomic character, indicating what separate bars represent. One of
|
facet |
Atomic character, indicating what separate facets represent. One
of |
bw |
Logical. Should the plot be black and white (for print), or color? |
... |
Arguments passed to and from other functions. |
An object of class 'ggplot'.
Caspar J. van Lissa
df_plot <- data.frame(Variable = rep(c("u1", "u2"), each = 3), Category = rep(1:3, 2), Probability = c(0.3381302605812, 0.148395173612088, 0.513474565806711, 0.472337708760608, 0.118484201496432, 0.40917808974296)) plot_prob(df_plot)
df_plot <- data.frame(Variable = rep(c("u1", "u2"), each = 3), Category = rep(1:3, 2), Probability = c(0.3381302605812, 0.148395173612088, 0.513474565806711, 0.472337708760608, 0.118484201496432, 0.40917808974296)) plot_prob(df_plot)
Creates a profile plot (ribbon plot) according to best practices, focusing on the visualization of classification uncertainty by showing:
Bars reflecting a confidence interval for the class centroids
Boxes reflecting the standard deviations within each class; a box encompasses +/- 64 percent of the observations in a normal distribution
Raw data, whose transparency is weighted by the posterior class probability, such that each observation is most clearly visible for the class it is most likely to be a member of.
plot_profiles( x, variables = NULL, ci = 0.95, sd = TRUE, add_line = FALSE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), ... ) ## Default S3 method: plot_profiles( x, variables = NULL, ci = 0.95, sd = TRUE, add_line = FALSE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), ... )
plot_profiles( x, variables = NULL, ci = 0.95, sd = TRUE, add_line = FALSE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), ... ) ## Default S3 method: plot_profiles( x, variables = NULL, ci = 0.95, sd = TRUE, add_line = FALSE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, 0.1), ... )
x |
An object containing the results of a mixture model analysis. |
variables |
A character vectors with the names of the variables to be plotted (optional). |
ci |
Numeric. What confidence interval should the error bars span? Defaults to a 95 percent confidence interval. Set to NULL to remove error bars. |
sd |
Logical. Whether to display a box encompassing +/- 1SD Defaults to TRUE. |
add_line |
Logical. Whether to display a line, connecting cluster centroids belonging to the same latent class. Defaults to FALSE, as it is not recommended to imply connectivity between the different variables on the X-axis. |
rawdata |
Should raw data be plotted in the background? Setting this to TRUE might result in long plotting times. |
bw |
Logical. Should the plot be black and white (for print), or color? |
alpha_range |
The minimum and maximum values of alpha (transparency) for the raw data. Minimum should be 0; lower maximum values of alpha can help reduce overplotting. |
... |
Arguments passed to and from other functions. |
An object of class 'ggplot'.
Caspar J. van Lissa
df_plot <- data.frame(Variable = "x1", Class = "class1", Classes = 1, Model = "equal var 1", Value = 3.48571428571429, se = 0.426092805342181, Value.Variances = 3.81265306156537, se.Variances = 1.17660769119959) plot_profiles(list(df_plot = df_plot, df_raw = NULL), ci = NULL, sd = FALSE, add_line = FALSE, rawdata = FALSE, bw = FALSE)
df_plot <- data.frame(Variable = "x1", Class = "class1", Classes = 1, Model = "equal var 1", Value = 3.48571428571429, se = 0.426092805342181, Value.Variances = 3.81265306156537, se.Variances = 1.17660769119959) plot_profiles(list(df_plot = df_plot, df_raw = NULL), ci = NULL, sd = FALSE, add_line = FALSE, rawdata = FALSE, bw = FALSE)
Prepare an object of class sem_graph
, containing
data objects that can be rendered into a SEM graph. Using this function
allows
users to manually change the default graph specification before plotting it.
Input consists of (at least) a layout, and either nodes and edges, or
a model object.
## S3 method for class 'dagitty' prepare_graph(model, rect_height = 0.5, rect_width = 0.5, ...) prepare_graph(...) ## Default S3 method: prepare_graph( edges = NULL, layout = NULL, nodes = NULL, rect_width = 1.2, rect_height = 0.8, ellipses_width = 1, ellipses_height = 1, variance_diameter = 0.8, spacing_x = 2, spacing_y = 2, text_size = 4, curvature = 60, angle = NULL, fix_coord = FALSE, ... ) ## S3 method for class 'lavaan' prepare_graph(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'MxModel' prepare_graph(model, ...) ## S3 method for class 'character' prepare_graph(...) ## S3 method for class 'mplus.model' prepare_graph(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'mplusObject' prepare_graph(model, edges = NULL, layout = NULL, nodes = NULL, ...)
## S3 method for class 'dagitty' prepare_graph(model, rect_height = 0.5, rect_width = 0.5, ...) prepare_graph(...) ## Default S3 method: prepare_graph( edges = NULL, layout = NULL, nodes = NULL, rect_width = 1.2, rect_height = 0.8, ellipses_width = 1, ellipses_height = 1, variance_diameter = 0.8, spacing_x = 2, spacing_y = 2, text_size = 4, curvature = 60, angle = NULL, fix_coord = FALSE, ... ) ## S3 method for class 'lavaan' prepare_graph(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'MxModel' prepare_graph(model, ...) ## S3 method for class 'character' prepare_graph(...) ## S3 method for class 'mplus.model' prepare_graph(model, edges = NULL, layout = NULL, nodes = NULL, ...) ## S3 method for class 'mplusObject' prepare_graph(model, edges = NULL, layout = NULL, nodes = NULL, ...)
model |
Instead of the edges argument, it is also possible to use the
model argument and pass an object for which a method exists (e.g.,
|
rect_height |
Height of rectangles (used to display observed variables), Default: 0.8 |
rect_width |
Width of rectangles (used to display observed variables), Default: 1.2 |
... |
Additional arguments passed to and from functions. |
edges |
Object of class 'tidy_edges', or a |
layout |
A matrix (or data.frame) that describes the layout; see
|
nodes |
Optional, object of class 'tidy_nodes', created with the
|
ellipses_width |
Width of ellipses (used to display latent variables), Default: 1 |
ellipses_height |
Height of ellipses (used to display latent variables), Default: 1 |
variance_diameter |
Diameter of variance circles, Default: .8 |
spacing_x |
Spacing between columns of the graph, Default: 1 |
spacing_y |
Spacing between rows of the graph, Default: 1 |
text_size |
Point size of text, Default: 4 |
curvature |
Curvature of curved edges. The curve is a circle segment
originating in a point that forms a triangle with the two connected points,
with angles at the two connected points equal to |
angle |
Angle used to connect nodes by the top and bottom. Defaults to NULL, which means Euclidean distance is used to determine the shortest distance between node sides. A numeric value between 0-180 can be provided, where 0 means that only nodes with the same x-coordinates are connected top-to-bottom, and 180 means that all nodes are connected top-to-bottom. |
fix_coord |
Whether or not to fix the aspect ratio of the graph. Does not work with multi-group or multilevel models. Default: FALSE. |
Object of class 'sem_graph'
library(lavaan) res <- sem("dist ~ speed", cars) prepare_graph(res)
library(lavaan) res <- sem("dist ~ speed", cars) prepare_graph(res)
Estimate an auxiliary model based on multiple datasets, randomly drawing latent class values based on the estimated probability of belonging to each class. The pseudo class variable is treated as an observed variable within each dataset, and results are pooled across datasets to account for classification uncertainty.
pseudo_class(x, model, df_complete = NULL, ...) ## S3 method for class 'MxModel' pseudo_class(x, model, df_complete = NULL, data = NULL, m = 20, ...)
pseudo_class(x, model, df_complete = NULL, ...) ## S3 method for class 'MxModel' pseudo_class(x, model, df_complete = NULL, data = NULL, m = 20, ...)
x |
An object for which a method exists, typically either a fitted
|
model |
Either an expression to execute on every generated dataset,
or a function that performs the analysis on every generated dataset,
or a character that can be interpreted as a structural equation model using
|
df_complete |
Integer. Degrees of freedom of the complete-data analysis. |
... |
Additional arguments passed to other functions. |
data |
A data.frame on which the auxiliary model can be evaluated. Note
that the row order must be identical to that of the data used to fit |
m |
Integer. Number of datasets to generate. Default is 20. |
An object of class data.frame
containing pooled
estimates.
Pseudo-class technique: Wang C-P, Brown CH, Bandeen-Roche K (2005). Residual Diagnostics for Growth Mixture Models: Examining the Impact of a Preventive Intervention on Multiple Trajectories of Aggressive Behavior. Journal of the American Statistical Association 100(3):1054-1076. doi:10.1198/016214505000000501
Pooling results across samples: Van Buuren, S. 2018. Flexible Imputation of Missing Data. Second Edition. Boca Raton, FL: Chapman & Hall/CRC. doi:10.1201/9780429492259
set.seed(2) dat <- iris[c(1:5, 50:55, 100:105), 1:4] colnames(dat) <- c("SL", "SW", "PL", "PW") fit <- suppressWarnings(mx_profiles(data = dat, classes = 3)) pct_mx <- pseudo_class(x = fit, model = "SL ~ class", data = dat, m = 2) pct_lm <- pseudo_class(x = fit, model = lm( SL ~ class, data = data), data = dat, m = 2) pcte <- pseudo_class(x = fit, model = lm(SL ~ class, data = data), data = dat, m = 2) pct_func <- pseudo_class(x = fit, model = function(data){lm(SL ~ class, data = data)}, data = dat, m = 2)
set.seed(2) dat <- iris[c(1:5, 50:55, 100:105), 1:4] colnames(dat) <- c("SL", "SW", "PL", "PW") fit <- suppressWarnings(mx_profiles(data = dat, classes = 3)) pct_mx <- pseudo_class(x = fit, model = "SL ~ class", data = dat, m = 2) pct_lm <- pseudo_class(x = fit, model = lm( SL ~ class, data = data), data = dat, m = 2) pcte <- pseudo_class(x = fit, model = lm(SL ~ class, data = data), data = dat, m = 2) pct_func <- pseudo_class(x = fit, model = function(data){lm(SL ~ class, data = data)}, data = dat, m = 2)
This convenience function runs objects for which a method exists
using lavaan. It is intended for use with
tidySEM
, and passes the $syntax
and $data
elements of a
tidy_sem
object on to lavaan
.
run_lavaan(x, ...)
run_lavaan(x, ...)
x |
An object for which a method exists. |
... |
Parameters passed on to other functions. |
Returns a lavaan object.
df <- iris[1:3] names(df) <- paste0("X_", 1:3) run_lavaan(measurement(tidy_sem(df), meanstructure = TRUE))
df <- iris[1:3] names(df) <- paste0("X_", 1:3) run_lavaan(measurement(tidy_sem(df), meanstructure = TRUE))
This convenience function runs objects for which a method exists
using OpenMx, with sensible defaults. It is intended for use with
tidySEM
. For instance, it will convert a tidySEM
object to
a mxModel
and run it, and it will try to ensure convergence for
mixture models created using mx_mixture
.
Knowledgeable users may want to run models manually.
run_mx(x, ...)
run_mx(x, ...)
x |
An object for which a method exists. |
... |
Parameters passed on to other functions. |
Returns an mxModel
with free parameters updated
to their final values.
df <- iris[1:3] names(df) <- paste0("X_", 1:3) run_mx(measurement(tidy_sem(df), meanstructure = TRUE))
df <- iris[1:3] names(df) <- paste0("X_", 1:3) run_mx(measurement(tidy_sem(df), meanstructure = TRUE))
Calculate skew and kurtosis, standard errors for both, and the estimates divided by two times the standard error. If this latter quantity exceeds an absolute value of 1, the skew/kurtosis is significant. With very large sample sizes, significant skew/kurtosis is common.
skew_kurtosis(x, verbose = FALSE, se = FALSE, ...)
skew_kurtosis(x, verbose = FALSE, se = FALSE, ...)
x |
An object for which a method exists. |
verbose |
Logical. Whether or not to print messages to the console, Default: FALSE |
se |
Whether or not to return the standard errors, Default: FALSE |
... |
Additional arguments to pass to and from functions. |
A matrix
of skew and kurtosis statistics for x
.
skew_kurtosis(datasets::anscombe)
skew_kurtosis(datasets::anscombe)
Provides access to the syntax
element of a
tidy_sem
object. This can be used to return or assign to the
syntax
element.
syntax(x) syntax(x) <- value
syntax(x) syntax(x) <- value
x |
Object of class tidy_sem. |
value |
A valid value for |
data.frame
dict <- tidy_sem(iris, split = "\\.") dict <- add_paths(dict, Sepal.Width ~~ Sepal.Length) syntax(dict)
dict <- tidy_sem(iris, split = "\\.") dict <- add_paths(dict, Sepal.Width ~~ Sepal.Length) syntax(dict)
Extracts a publication-ready covariance or correlation matrix from an object for which a method exists.
table_cors(x, value_column = "est_sig_std", digits = 2, ...)
table_cors(x, value_column = "est_sig_std", digits = 2, ...)
x |
An object for which a method exists. |
value_column |
Character. Name of the column to use to propagate the matrix. Defaults to "est_sig_std", the standardized estimate with significance asterisks. |
digits |
Number of digits to round to when formatting values. |
... |
Additional arguments passed to and from methods. |
A Matrix or a list of matrices (in case there are between/within correlation matrices).
Caspar J. van Lissa
library(lavaan) HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school") table_cors(fit)
library(lavaan) HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school") table_cors(fit)
Takes a model object, extracts model fit information, and formats it as a publication-ready table.
table_fit(x, ...)
table_fit(x, ...)
x |
A model object for which a method exists. |
... |
Arguments passed to other functions. |
A data.frame of formatted results.
Caspar J. van Lissa
Other Reporting tools:
conf_int()
,
est_sig()
,
table_prob()
,
table_results()
library(lavaan) HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school") table_fit(fit)
library(lavaan) HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school") table_fit(fit)
Returns thresholds for ordinal dependent variables in probability scale.
table_prob(x, ...)
table_prob(x, ...)
x |
An object for which a method exists. |
... |
Arguments passed to other functions. |
A data.frame with results in probability scale.
Other Reporting tools:
conf_int()
,
est_sig()
,
table_fit()
,
table_results()
## Not run: df <- data_mix_ordinal df[1:4] <- lapply(df, ordered) mx_lca(data = df, classes = 2) -> res ## End(Not run)
## Not run: df <- data_mix_ordinal df[1:4] <- lapply(df, ordered) mx_lca(data = df, classes = 2) -> res ## End(Not run)
Takes a model object, and formats it as a publication-ready table.
table_results( x, columns = c("label", "est_sig", "se", "pval", "confint", "group", "level"), digits = 2, format_numeric = TRUE, ... )
table_results( x, columns = c("label", "est_sig", "se", "pval", "confint", "group", "level"), digits = 2, format_numeric = TRUE, ... )
x |
A model object for which a method exists. |
columns |
A character vector of columns to retain from the results
section. If this is set to |
digits |
Number of digits to round to when formatting numeric columns. |
format_numeric |
Logical, indicating whether or not to format numeric
columns. Defaults to |
... |
Logical expressions used to filter the rows of results returned. |
A data.frame of formatted results.
Caspar J. van Lissa
Other Reporting tools:
conf_int()
,
est_sig()
,
table_fit()
,
table_prob()
library(lavaan) HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school") table_results(fit)
library(lavaan) HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school") table_results(fit)
Create an object of class tidy_sem
, which has the following elements:
dictionary An overview of the variables in the tidy_sem
object,
and their assignment to scale/latent variables.
data Optionally, the data.frame
containing the data referenced
in $dictionary
.
syntax Optionally, syntax defining a SEM-model by reference to the
variables contained in $data
.
tidy_sem(x, split = "_")
tidy_sem(x, split = "_")
x |
An object for which a method exists, e.g., a vector of variable names, or a data.frame. |
split |
Character. Defining the regular expression used by
|
When tidy_sem
is called on a character
string or
data.frame
, it attempts to assign variables to superordinate
scale/latent variables based on the variable name and the splitting character
defined in the split
argument. Thus, the function will assign the
variable "scale_01"
to a scale/latent variable called "scale"
when split = "_"
. Alternatively, if the variable name is
"construct.1"
, the split character "\."
separates
the "construct"
name from item number "1"
. The character
"."
is escaped with a double backslash, because it is a special
character in regular expressions.
An object of class "tidy_sem"
Caspar J. van Lissa
tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5", "macqj_1", "macqj_2", "macqj_3", "macqj_4", "macqj_5", "macqj_6", "macqj_7", "macqj_8", "macqj_9", "macqj_10", "macqj_11", "macqj_12", "macqj_13", "macqj_14", "macqj_15", "macqj_16", "macqj_17", "macqj_18", "macqj_19", "macqj_20", "macqj_21", "macqr_1", "macqr_2", "macqr_3", "macqr_4", "macqr_5", "macqr_6", "macqr_7", "macqr_8", "macqr_9", "macqr_10", "macqr_11", "macqr_12", "macqr_13", "macqr_14", "macqr_15", "macqr_16", "macqr_17", "macqr_18", "macqr_19", "macqr_20", "macqr_21", "sex")) tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5", "mac_q_j_1", "mac_q_j_2", "mac_q_j_3", "mac_q_j_4", "mac_q_j_5", "mac_q_j_6", "mac_q_j_7", "mac_q_j_8", "mac_q_j_9", "mac_q_j_10", "mac_q_j_11", "mac_q_j_12", "mac_q_j_13", "mac_q_j_14", "mac_q_j_15", "mac_q_j_16", "mac_q_j_17", "mac_q_j_18", "mac_q_j_19", "mac_q_j_20", "mac_q_j_21", "mac_q_r_1", "mac_q_r_2", "mac_q_r_3", "mac_q_r_4", "mac_q_r_5", "mac_q_r_6", "mac_q_r_7", "mac_q_r_8", "mac_q_r_9", "mac_q_r_10", "mac_q_r_11", "mac_q_r_12", "mac_q_r_13", "mac_q_r_14", "mac_q_r_15", "mac_q_r_16", "mac_q_r_17", "mac_q_r_18", "mac_q_r_19", "mac_q_r_20", "mac_q_r_21"))
tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5", "macqj_1", "macqj_2", "macqj_3", "macqj_4", "macqj_5", "macqj_6", "macqj_7", "macqj_8", "macqj_9", "macqj_10", "macqj_11", "macqj_12", "macqj_13", "macqj_14", "macqj_15", "macqj_16", "macqj_17", "macqj_18", "macqj_19", "macqj_20", "macqj_21", "macqr_1", "macqr_2", "macqr_3", "macqr_4", "macqr_5", "macqr_6", "macqr_7", "macqr_8", "macqr_9", "macqr_10", "macqr_11", "macqr_12", "macqr_13", "macqr_14", "macqr_15", "macqr_16", "macqr_17", "macqr_18", "macqr_19", "macqr_20", "macqr_21", "sex")) tidy_sem(c("bfi_1", "bfi_2", "bfi_3", "bfi_4", "bfi_5", "mac_q_j_1", "mac_q_j_2", "mac_q_j_3", "mac_q_j_4", "mac_q_j_5", "mac_q_j_6", "mac_q_j_7", "mac_q_j_8", "mac_q_j_9", "mac_q_j_10", "mac_q_j_11", "mac_q_j_12", "mac_q_j_13", "mac_q_j_14", "mac_q_j_15", "mac_q_j_16", "mac_q_j_17", "mac_q_j_18", "mac_q_j_19", "mac_q_j_20", "mac_q_j_21", "mac_q_r_1", "mac_q_r_2", "mac_q_r_3", "mac_q_r_4", "mac_q_r_5", "mac_q_r_6", "mac_q_r_7", "mac_q_r_8", "mac_q_r_9", "mac_q_r_10", "mac_q_r_11", "mac_q_r_12", "mac_q_r_13", "mac_q_r_14", "mac_q_r_15", "mac_q_r_16", "mac_q_r_17", "mac_q_r_18", "mac_q_r_19", "mac_q_r_20", "mac_q_r_21"))
This function is a wrapper for the function
car::linearHypothesis()
, but which uses the bain::bain()
syntax to parse
equality constrained hypotheses.
wald_test(x, hypothesis, ...)
wald_test(x, hypothesis, ...)
x |
An object for which a method exists. |
hypothesis |
A character string with equality constrained hypotheses,
specified according to the |
... |
Additional arguments passed to |
A data.frame
of class wald_test
.
mod <- lm(Sepal.Length ~ Sepal.Width, data = iris) coef(mod) wald_test(mod, "Sepal.Width = 0")
mod <- lm(Sepal.Length ~ Sepal.Width, data = iris) coef(mod) wald_test(mod, "Sepal.Width = 0")
These simulated data are based on a study by Dijenborgh, Swildens, and Zegwaard on different types of caregivers among those providing informal care to outpatients receiving mental healthcare.
data(zegwaard_carecompass)
data(zegwaard_carecompass)
A data frame with 513 rows and 10 variables.
burdened | numeric |
How strongly is the caregiver's life affected by their responsibilities? Scale score, based on 15 items with Likert-type response options. Example: "I never feel free of responsibilities" |
trapped | numeric |
Caregiver's cognitions regarding freedom of choice. Scale score, based on 3 items with Likert-type response options. Example: "I feel trapped by the affliction of my charge" |
negaffect | numeric |
Different types of negative emotions experienced by the caregiver. Scale score, based on 9 items with Likert-type response options. Example: "I feel angry in the relationship with my charge" |
loneliness | numeric |
Caregiver's perceived loneliness. Scale score, based on 11 items with Likert-type response options. Example: "I miss having people around" |
sex | factor |
Caregiver sex |
sexpatient | factor |
Sex of the patient |
cohabiting | factor |
Whether or not the caregiver cohabits with the patient |
distance | numeric |
Travel time in minutes for the caregiver to reach the patient |
freqvisit | ordered |
Ordinal variable, indicating frequency of visits |
relationship | factor |
Type of relationship of patient with caregiver |