Package: metaforest 0.1.5

metaforest: Exploring Heterogeneity in Meta-Analysis using Random Forests

Conduct random forests-based meta-analysis, obtain partial dependence plots for metaforest and classic meta-analyses, and cross-validate and tune metaforest- and classic meta-analyses in conjunction with the caret package. A requirement of classic meta-analysis is that the studies being aggregated are conceptually similar, and ideally, close replications. However, in many fields, there is substantial heterogeneity between studies on the same topic. Classic meta-analysis lacks the power to assess more than a handful of univariate moderators. MetaForest, by contrast, has substantial power to explore heterogeneity in meta-analysis. It can identify important moderators from a larger set of potential candidates (Van Lissa, 2020). This is an appealing quality, because many meta-analyses have small sample sizes. Moreover, MetaForest yields a measure of variable importance which can be used to identify important moderators, and offers partial prediction plots to explore the shape of the marginal relationship between moderators and effect size.

Authors:Caspar J. van Lissa

metaforest_0.1.5.tar.gz
metaforest_0.1.5.zip(r-4.5)metaforest_0.1.5.zip(r-4.4)metaforest_0.1.5.zip(r-4.3)
metaforest_0.1.5.tgz(r-4.4-any)metaforest_0.1.5.tgz(r-4.3-any)
metaforest_0.1.5.tar.gz(r-4.5-noble)metaforest_0.1.5.tar.gz(r-4.4-noble)
metaforest_0.1.5.tgz(r-4.4-emscripten)metaforest_0.1.5.tgz(r-4.3-emscripten)
metaforest.pdf |metaforest.html
metaforest/json (API)
NEWS

# Install 'metaforest' in R:
install.packages('metaforest', repos = c('https://cjvanlissa.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cjvanlissa/metaforest/issues

Datasets:
  • curry - Happy to Help?
  • fukkink_lont - Does training matter? A meta-analysis of caregiver training studies

On CRAN:

5.37 score 1 stars 78 scripts 416 downloads 3 mentions 11 exports 37 dependencies

Last updated 3 months agofrom:757ca35a6b. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:coef_testextract_proximityMetaForestModelInfo_mfModelInfo_rmaPartialDependencepreselectpreselect_varsSimulateSMDVarImpPlotWeightedScatter

Dependencies:clicolorspacedata.tablefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSmathjaxrMatrixmetadatmetaformgcvmunsellnlmenumDerivpbapplypillarpkgconfigR6rangerRColorBrewerRcppRcppEigenrlangscalestibbleutf8vctrsviridisLitewithr

Introduction to metaforest

Rendered fromIntroduction_to_metaforest.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2024-01-25
Started: 2019-01-22